|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha : |
26/02/2020 |
Actualizado : |
26/02/2020 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
QUERO, G.; BONNECARRERE, V.; SIMONDI, S.; SANTOS, J.; FERNÁNDEZ, S.; GUTIÉRREZ, L.; GARAYCOCHEA, S.; BORSANI, O. |
Afiliación : |
GASTÓN QUERO CORRALLO, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay; MARIA VICTORIA BONNECARRERE MARTINEZ, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; SEBASTIÁN SIMONDI, Área de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo), Mendoza, Argentina; JORGE SANTOS, Área de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo), Mendoza, Argentina; SEBASTIÁN FERNÁNDEZ, Facultad de Ingeniería, Instituto de Ingeniería Eléctrica, Universidad de La República, Montevideo, Uruguay; LUCÍA GUTIÉRREZ, Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA; Departamento de Biometría, Estadística y Cómputos, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay; SILVIA RAQUEL GARAYCOCHEA SOLSONA, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; OMAR BORSANI, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay. |
Título : |
Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach. |
Fecha de publicación : |
2020 |
Fuente / Imprenta : |
Photosynthesis Research, 2020. Doi: https://doi.org/10.1007/s11120-020-00721-2 |
DOI : |
10.1007/s11120-020-00721-2 |
Idioma : |
Inglés |
Notas : |
Article history: Received: 11 October 2019 / Accepted: 10 February 2020 / Published: 18 February 2020.
Corresponding author: Gastón Quero (gastonquero@fagro.edu.uy)
Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s1112 0-020-00721 -2) contains supplementary material, which is available to authorized users. |
Contenido : |
ABSTRACT.
The photosynthesis process is determined by the intensity level and spectral quality of the light; therefore, leaves need to adapt to a changing environment. The incident energy absorbed can exceed the sink capability of the photosystems, and, in this context, photoinhibition may occur in both photosystem II (PSII) and photosystem I (PSI). Quantum yield parameters analyses reveal how the energy is managed. These parameters are genotype-dependent, and this genotypic variability is a good opportunity to apply mapping association strategies to identify genomic regions associated with photosynthesis energy partitioning. An experimental and mathematical approach is proposed for the determination of an index which estimates the energy per photon flux for each spectral bandwidth (Δλ) of the light incident (QI index). Based on the QI, the spectral quality of the plant growth, environmental lighting, and the actinic light of PAM were quantitatively very similar which allowed an accurate phenotyping strategy of a rice population. A total of 143 genomic single regions associated with at least one trait of chlorophyll fluorescence were identified. Moreover, chromosome 5 gathers most of these regions indicating the importance of this chromosome in the genetic regulation of the photochemistry process. Through a GWAS strategy, 32 genes of rice genome associated with the main parameters of the photochemistry process of photosynthesis in rice were identified. Association between light-harvesting complexes and the potential quantum yield of PSII, as well as the relationship between coding regions for PSI-linked proteins in energy distribution during the photochemical process of photosynthesis is analyzed. MenosABSTRACT.
The photosynthesis process is determined by the intensity level and spectral quality of the light; therefore, leaves need to adapt to a changing environment. The incident energy absorbed can exceed the sink capability of the photosystems, and, in this context, photoinhibition may occur in both photosystem II (PSII) and photosystem I (PSI). Quantum yield parameters analyses reveal how the energy is managed. These parameters are genotype-dependent, and this genotypic variability is a good opportunity to apply mapping association strategies to identify genomic regions associated with photosynthesis energy partitioning. An experimental and mathematical approach is proposed for the determination of an index which estimates the energy per photon flux for each spectral bandwidth (Δλ) of the light incident (QI index). Based on the QI, the spectral quality of the plant growth, environmental lighting, and the actinic light of PAM were quantitatively very similar which allowed an accurate phenotyping strategy of a rice population. A total of 143 genomic single regions associated with at least one trait of chlorophyll fluorescence were identified. Moreover, chromosome 5 gathers most of these regions indicating the importance of this chromosome in the genetic regulation of the photochemistry process. Through a GWAS strategy, 32 genes of rice genome associated with the main parameters of the photochemistry process of photosynthesis in rice were identified. Association ... Presentar Todo |
Palabras claves : |
Actinic light; Candidate genes; GWAS; Quantum yields. |
Asunto categoría : |
F30 Genética vegetal y fitomejoramiento |
Marc : |
LEADER 02911naa a2200277 a 4500 001 1060838 005 2020-02-26 008 2020 bl uuuu u00u1 u #d 024 7 $a10.1007/s11120-020-00721-2$2DOI 100 1 $aQUERO, G. 245 $aGenetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach.$h[electronic resource] 260 $c2020 500 $aArticle history: Received: 11 October 2019 / Accepted: 10 February 2020 / Published: 18 February 2020. Corresponding author: Gastón Quero (gastonquero@fagro.edu.uy) Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s1112 0-020-00721 -2) contains supplementary material, which is available to authorized users. 520 $aABSTRACT. The photosynthesis process is determined by the intensity level and spectral quality of the light; therefore, leaves need to adapt to a changing environment. The incident energy absorbed can exceed the sink capability of the photosystems, and, in this context, photoinhibition may occur in both photosystem II (PSII) and photosystem I (PSI). Quantum yield parameters analyses reveal how the energy is managed. These parameters are genotype-dependent, and this genotypic variability is a good opportunity to apply mapping association strategies to identify genomic regions associated with photosynthesis energy partitioning. An experimental and mathematical approach is proposed for the determination of an index which estimates the energy per photon flux for each spectral bandwidth (Δλ) of the light incident (QI index). Based on the QI, the spectral quality of the plant growth, environmental lighting, and the actinic light of PAM were quantitatively very similar which allowed an accurate phenotyping strategy of a rice population. A total of 143 genomic single regions associated with at least one trait of chlorophyll fluorescence were identified. Moreover, chromosome 5 gathers most of these regions indicating the importance of this chromosome in the genetic regulation of the photochemistry process. Through a GWAS strategy, 32 genes of rice genome associated with the main parameters of the photochemistry process of photosynthesis in rice were identified. Association between light-harvesting complexes and the potential quantum yield of PSII, as well as the relationship between coding regions for PSI-linked proteins in energy distribution during the photochemical process of photosynthesis is analyzed. 653 $aActinic light 653 $aCandidate genes 653 $aGWAS 653 $aQuantum yields 700 1 $aBONNECARRERE, V. 700 1 $aSIMONDI, S. 700 1 $aSANTOS, J. 700 1 $aFERNÁNDEZ, S. 700 1 $aGUTIÉRREZ, L. 700 1 $aGARAYCOCHEA, S. 700 1 $aBORSANI, O. 773 $tPhotosynthesis Research, 2020. Doi: https://doi.org/10.1007/s11120-020-00721-2
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
Registros recuperados : 5 | |
1. |  | BIRU, F.N; ISLAM, T.; CIBILS-STEWART, X.; CAZZONELLI, CH.I.; ELBAUM, R.; JOHNSON, S.N. Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO2. Global Change Biology, Volume 27, Issue 12, Pages 2959-2969, June 2021. Doi: https://doi.org/10.1111/gcb.15619 Article history: Received: 8 February 2021/Accepted: 12 March 2021./ First published: 27 March 2021: Email: f.biru@westernsydney.edu.au.Tipo: Artículos en Revistas Indexadas Internacionales | Circulación / Nivel : Internacional - -- |
Biblioteca(s): INIA La Estanzuela. |
|    |
2. |  | PUTRA, R.; ISLAM, T.; CIBILS-STEWART, X.; HARTLEY, S.E.; JOHNSON, S.N. Agroecological consequences of silicon supplementation for a legume cultivation: Two-year-long field observations. Agriculture, Ecosystems and Environment. 2024, Volume 365, Article 108893. https://doi.org/10.1016/j.agee.2024.108893 -- OPEN ACCESS. Article history: Received 25 October 2023; Revised 28 December 2023; Accepted 12 January 2024; Available online 7 February 2024; Version of Record 7 February 2024. -- Correspondence: Putra, R.; Department of Chemical Ecology, Faculty of...Tipo: Artículos en Revistas Indexadas Internacionales | Circulación / Nivel : Internacional - -- |
Biblioteca(s): INIA Las Brujas. |
|    |
3. |  | JOHNSON, S.N; BARTON, C.V.M.; BIRU, F.N.; ISLAM , T.; MACE, W.J.; ROWE, R.C.; CIBILS-STEWART, X. Elevated atmospheric CO2 suppresses silicon accumulation and exacerbates endophyte reductions in plant phosphorus. [Dataset]. DRYAD Dataset, 2023. https://doi.org/10.5061/dryad.6m905qg4p Article history: Publication date 12 April 12 2023. -- Correspondence author: Johnson, S.N.; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia; email:scott.johnson@westernsydney.edu.au --...Tipo: Artículos en Revistas Indexadas Internacionales | Circulación / Nivel : Internacional - -- |
Biblioteca(s): INIA Las Brujas. |
|    |
4. |  | JOHNSON, S.N.; BARTON, C.V.M.; BIRU, F.N.; ISLAM , T.; MACE, W.J.; ROWE, R.C.; CIBILS-STEWART, X. Elevated atmospheric CO2 suppresses silicon accumulation and exacerbates endophyte reductions in plant phosphorus. Functional Ecology, 2023. https://doi.org/10.1111/1365-2435.14342 -- [Article in Press] Article history: Accepted 28 March 2023, Received 15 January 2023, First published 27 April 2023. -- Correspondence author:Johnson, S.N.; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia;...Tipo: Artículos en Revistas Indexadas Internacionales | Circulación / Nivel : Internacional - -- |
Biblioteca(s): INIA Las Brujas. |
|    |
5. |  | CIBILS-STEWART, X.; PUTRA, R.; ISLAM, T.; FANNA, D.J.; WUHRER, R.; MACE, W.J.; HARTLEY, S.E.; POPAY, A.J.; JOHNSON, S.N. Silicon and Epichloë-endophyte defences in a model temperate grass diminish feeding efficiency and immunity of an insect folivore. Functional Ecology, 2023, https://doi.org/10.1111/1365-2435.14453 --OPEN ACCESS. Article history: Manuscript received 08 April 2023; Manuscript accepted 21 September 2023; Version of Record online 25 October 2023. -- Correspondnce author: Cibils-Stewart, X.; Hawkesbury Institute for the Environment, Western Sydney...Tipo: Artículos en Revistas Indexadas Internacionales | Circulación / Nivel : Internacional - -- |
Biblioteca(s): INIA Las Brujas. |
|    |
Registros recuperados : 5 | |
|
Expresión de búsqueda válido. Check! |
|
|