|
|
Registros recuperados : 88 | |
2. |  | GALVÁN, G. Poblaciones locales de cebolla In: ARBOLEYA, J.; CAPRA, G.; ALBÍN, A. (Eds.). Producción de cebolla en la zona sur. Montevideo (Uruguay): INIA, 1993. p25-26 (INIA Boletin de Divulgación; 29)Biblioteca(s): INIA La Estanzuela; INIA Las Brujas; INIA Tacuarembó. |
|    |
3. |  | GERMAN, S.; GALVÁN, G. Avances en el conocimiento de las relaciones planta-patógeno para el mejoramiento por resistencia a enfermedades de los cultivos en Uruguay. (Conferencia). Bloque 2: Mejoramiento por resistencia a enfermedades. In: Sociedad Uruguaya de Fitopatología Jornada Uruguaya de Fitopatología, 4., Jornada Uruguaya de Protección Vegetal, 2., 1° setiembre, 2017, Montevideo, Uruguay. Libro de resúmenes. Montevideo (UY): Sociedad Uruguay de Fitopatología (SUFIT), 2017. p. 33.Biblioteca(s): INIA Las Brujas. |
|    |
5. |  | GALVÁN, G.; SOLLIER, S. Evaluación de cultivares de cebolla NRI-HRI 1993. In: INIA (Instituto Nacional de Investigación Agropecuaria); PROGRAMA HORTICULTURA. Resultados experimentales en cebolla 1993-1994. Reunión técnica. Canelones (UY): INIA Las Brujas, 1994. p. 44-47 (INIA Serie Actividades de Difusión ; 6)Biblioteca(s): INIA La Estanzuela; INIA Las Brujas; INIA Tacuarembó. |
|    |
7. |  | GALVÁN, G.; GERMAN, S. (Coord.). Mejoramiento genético por resistencia a enfermedades e interacciones planta-patógeno. In: JOURNAL OF BASIC & APPLIED GENETICS, 2016, Vol.27, Iss. 1 (Supp.). XVI LATIN AMERICAN CONGRESS OF GENETICS, IV CONGRESS OF THE URUGUAYAN SOCIETY OF GENETICS, XLIX ANNUAL MEETING OF THE GENETICS SOCIETY OF CHILE, XLV ARGENTINE CONGRESS OF GENETICS, 9-12 October 2016. PROCEEDINGS. Montevideo (Uruguay): SAG, 2016. p. 60-61Biblioteca(s): INIA Las Brujas. |
|    |
14. |  | Sollier, S.Galván, G.Acosta, M. Control de calidad en la producción de semilla de Pantanoso del Sauce CRS, nuevo cultivar nacional de cebolla ln: Galván, G.; Bugarín, G.; Vilaró, F., org. Trabajos presentados. Las Brujas, Canelones (Uruguay): INIA, 2001. p. 47-52 Proyecto de Validación de Tecnología PREDEG (MGAP)-BIDBiblioteca(s): INIA Las Brujas. |
|   |
15. |  | Rolfo, M.; Vieira, S.; Galván, G. Introducción de un inoculante micorritico ln: Simposio Brasileiro sobre Microbiologia do Solo, 3 : 1994 jun 6-10 : Londrina, 3 : 1994 jun 6-10 : Londrina; Reuniao de Laboratorios para Recomendacao de Estirpes de Rhizobium e Bradyrhizobium, 6 Resumos. Londrina (Brasil): IAPAR; EMBRAPA, 1994. p114Biblioteca(s): INIA La Estanzuela. |
|   |
Registros recuperados : 88 | |
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Treinta y Tres. Por información adicional contacte bibliott@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Treinta y Tres. |
Fecha actual : |
28/03/2016 |
Actualizado : |
24/09/2018 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
A - 1 |
Autor : |
BASSU, S.; BRISSON, N.; DURAND, J.L.; BOOTE, K.; LIZASO, J.; JONES, J.W.; ROSENZWEIG, C.; RUANE, A.C.; ADAM, M.; BARON, C.; BASSO, B.; BIERNATH, C.; BOOGAARD, H.; CONIJN, S.; CORBEELS, M.L; DERYNG, D.; SANTIS, G. DE; GAYLER, S.; GRASSINI, P.; HATFIELD, J.; HOEK, S.; IZAURRALDE, C.; JONGSCHAAP, R.; KEMANIAN, A.R.; KERSEBAUM, C.KIM, S-H.; KUMAR, N.; MAKOWSKI, D.; MÜLLER, C.; NENDEL, C.; PRIESACK, E.; PRAVIA, V.; SAU, F.; SHCHERBAK, I.; TAO, F.; TEXEIRA, E.; TIMLIN, D.; WAHA, K. |
Afiliación : |
MARIA VIRGINIA PRAVIA NIN, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; Department of Plant Science, The Pennsylvania State University, USA. |
Título : |
How do various maize crop models vary in their responses to climate change factors? |
Fecha de publicación : |
2014 |
Fuente / Imprenta : |
Global Change Biology, 2014, v.20(7), p. 2301-2320. |
DOI : |
10.1111/gcb.12520 |
Idioma : |
Inglés |
Notas : |
Article history: Received 7 June 2013 and accepted 2 December 2013, published 2014. |
Contenido : |
Abstract:
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania).
While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data forcalibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha1 per °C. Doubling [CO2] from 360 to 720 lmol mol1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. MenosAbstract:
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania).
While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data forcalibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha1 per °C. Doubling [CO2] from 360 to 720 lmol mol1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2]... Presentar Todo |
Palabras claves : |
AGMIP; CARBON DIOXIDE; CLIMATE; CO2; GRAIN YIELD; MAIZE; MODEL INTERCOMPARISON; MODELIZACIÓN DE CULTIVOS; SIMULATION MODELS; TEMPERATURE. |
Thesagro : |
CLIMA; DIOXIDO DE CARBONO; INCERTIDUMBRE; MAÍZ; MODELOS DE SIMULACIÓN; TEMPERATURA. |
Asunto categoría : |
U10 Métodos matemáticos y estadísticos |
Marc : |
LEADER 03684naa a2200769 a 4500 001 1054517 005 2018-09-24 008 2014 bl uuuu u00u1 u #d 024 7 $a10.1111/gcb.12520$2DOI 100 1 $aBASSU, S. 245 $aHow do various maize crop models vary in their responses to climate change factors?$h[electronic resource] 260 $c2014 500 $aArticle history: Received 7 June 2013 and accepted 2 December 2013, published 2014. 520 $aAbstract: Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data forcalibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha1 per °C. Doubling [CO2] from 360 to 720 lmol mol1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. 650 $aCLIMA 650 $aDIOXIDO DE CARBONO 650 $aINCERTIDUMBRE 650 $aMAÍZ 650 $aMODELOS DE SIMULACIÓN 650 $aTEMPERATURA 653 $aAGMIP 653 $aCARBON DIOXIDE 653 $aCLIMATE 653 $aCO2 653 $aGRAIN YIELD 653 $aMAIZE 653 $aMODEL INTERCOMPARISON 653 $aMODELIZACIÓN DE CULTIVOS 653 $aSIMULATION MODELS 653 $aTEMPERATURE 700 1 $aBRISSON, N. 700 1 $aDURAND, J.L. 700 1 $aBOOTE, K. 700 1 $aLIZASO, J. 700 1 $aJONES, J.W. 700 1 $aROSENZWEIG, C. 700 1 $aRUANE, A.C. 700 1 $aADAM, M. 700 1 $aBARON, C. 700 1 $aBASSO, B. 700 1 $aBIERNATH, C. 700 1 $aBOOGAARD, H. 700 1 $aCONIJN, S. 700 1 $aCORBEELS, M.L 700 1 $aDERYNG, D. 700 1 $aSANTIS, G. DE 700 1 $aGAYLER, S. 700 1 $aGRASSINI, P. 700 1 $aHATFIELD, J. 700 1 $aHOEK, S. 700 1 $aIZAURRALDE, C. 700 1 $aJONGSCHAAP, R. 700 1 $aKEMANIAN, A.R. 700 1 $aKERSEBAUM, C.KIM, S-H. 700 1 $aKUMAR, N. 700 1 $aMAKOWSKI, D. 700 1 $aMÜLLER, C. 700 1 $aNENDEL, C. 700 1 $aPRIESACK, E. 700 1 $aPRAVIA, V. 700 1 $aSAU, F. 700 1 $aSHCHERBAK, I. 700 1 $aTAO, F. 700 1 $aTEXEIRA, E. 700 1 $aTIMLIN, D. 700 1 $aWAHA, K. 773 $tGlobal Change Biology, 2014$gv.20(7), p. 2301-2320.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Treinta y Tres (TT) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|