|
|
Registros recuperados : 10 | |
1. |  | BERMÚDEZ, R.; AYALA, W.; FERRÉS, S.; QUEHEILLE, P. Opciones forrajeras para la Región Este. In: INIA (Instituto Nacional de Investigación Agropecuaria); INIA Treinta y Tres. Producción de carne vacuna y ovina de calidad. Seminario de actualización técnica. Treinta y Tres (Uruguay): INIA, 2003. p. 1-10 (INIA Serie Actividades de Difusión ; 317) INIA Treinta y TresBiblioteca(s): INIA La Estanzuela; INIA Las Brujas; INIA Tacuarembó. |
|    |
4. |  | BERMÚDEZ, R.; AYALA, W.; FERRÉS, S.; QUEHEILLE, P.; RIET, I. Respuesta a la fertilización fosfatada de un mejoramiento de segundo año. [Resumen]. In: Actas Reunión de Grupo Técnico en Forrajeras del Cono Sur. Zona Campos, 19. Mercedes, Corrientes (Argentina): INTA, E.E. Mercedes, 2002, p. 190.Biblioteca(s): INIA Treinta y Tres. |
|    |
5. |  | Nuñez, S.Charavale, W.Alzugaray, R.Basso, C.Queheille, P.Gómez, A. La protección vegetal en la agricultura del siglo 20 ln: Congreso Nacional de Ingeniería Agronómica, 6., 1993, Montevideo, Uruguay Trabajos presentados. Montevideo (Uruguay): Asociación de Ingenieros Agrónomos del Uruguay, 1993. p. II- 14-17Biblioteca(s): INIA Las Brujas; INIA Tacuarembó. |
|   |
9. |  | AYALA, W.; BERMÚDEZ, R.; SOCA, P.; PEREIRA, G.; MANCUELLO, C.; ARRARTE, D.; FERNÁNDEZ, M.; HERNÁNDEZ, P.; LEIVA, G.; FERRÉS, S.; QUEHEILLE, P. Oferta de forraje de mejoramientos de campo y performance de la recría vacuna. In: INIA (Instituto Nacional de Investigación Agropecuaria); INIA Treinta y Tres. Producción de carne vacuna y ovina de calidad. Seminario de actualización técnica. Treinta y Tres (Uruguay): INIA, 2003. p. 69-82 (INIA Serie Actividades de Difusión ; 317)Biblioteca(s): INIA Las Brujas. |
|    |
10. |  | Ayala, W.; Bermúdez, R.; Soca, P.; Pereira, G.; Mancuello, G.; Arrarte, D.; Fernández, M.; Hernández, P.; Leiva, G.; Ferrés, S.; Queheille, P. Oferta de forraje de mejoramientos de campo y performance de la recría vacuna In: INIA (Instituto Nacional de Investigación Agropecuaria); INIA Treinta y Tres. Producción de carne vacuna y ovina de calidad. Seminario de actualización técnica. Treinta y Tres (Uruguay): INIA, 2003. p. 69-82 (INIA Serie Actividades de Difusión ; 317) INIA Treinta y TresBiblioteca(s): INIA La Estanzuela; INIA Tacuarembó. |
|   |
Registros recuperados : 10 | |
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha actual : |
09/11/2017 |
Actualizado : |
25/11/2019 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
Internacional - -- |
Autor : |
MASUDA, Y; MISZTAL, I.; LEGARRA, A.; TSURUTA, S.; LOURENCO, D.A.L.; FRAGOMENI, B.O.; AGUILAR, I. |
Afiliación : |
Y. MASUDA, Department of Animal and Dairy Science, University of Georgia; I. MISZTAL, Department of Animal and Dairy Science, University of Georgia; A. LEGARRA, INRA (Institut National de la Recherche Agronomique); S. TSURUTA, Department of Animal and Dairy Science, University of Georgia; D.A.L. LOURENCO, Department of Animal and Dairy Science, University of Georgia; B.O. FRAGOMENI, Department of Animal and Dairy Science, University of Georgia; IGNACIO AGUILAR GARCIA, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay. |
Título : |
Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient. |
Fecha de publicación : |
2017 |
Fuente / Imprenta : |
Journal of Animal Science, 2017, v. 95(1): 49-52. |
DOI : |
10.2527/jas.2016.0699 |
Idioma : |
Inglés |
Notas : |
Article history: Received: July 05, 2016; Accepted: Aug 16, 2016; Published: February 2, 2017.
This research was partially funded by the United States Department of Agriculture?s National Institute of Food and Agriculture (Agriculture and Food Research Initiative competitive grant 2015-67015-22936). |
Contenido : |
ABSTRACT.
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (q). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix (A−1) including genotyped animals and their ancestors. The elements of A−1 were rapidly calculated with the Henderson?s rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix?vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of A22 with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.
Copyright © 2016. American Society of Animal Science. MenosABSTRACT.
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (q). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix (A−1) including genotyped animals and their ancestors. The elements of A−1 were rapidly calculated with the Henderson?s rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix?vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of A22 with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When t... Presentar Todo |
Palabras claves : |
COMPUTATION; GENOMIC SELECTION; INVERSION; NUMERATOR RELATIONSHIP MATRIX; PRECONDITIONED CONJUGATE GRADIENT; SPARSE MATRIX. |
Asunto categoría : |
-- |
Marc : |
LEADER 02919naa a2200289 a 4500 001 1057743 005 2019-11-25 008 2017 bl uuuu u00u1 u #d 024 7 $a10.2527/jas.2016.0699$2DOI 100 1 $aMASUDA, Y 245 $aTechnical note$bAvoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.$h[electronic resource] 260 $c2017 500 $aArticle history: Received: July 05, 2016; Accepted: Aug 16, 2016; Published: February 2, 2017. This research was partially funded by the United States Department of Agriculture?s National Institute of Food and Agriculture (Agriculture and Food Research Initiative competitive grant 2015-67015-22936). 520 $aABSTRACT. This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (q). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix (A−1) including genotyped animals and their ancestors. The elements of A−1 were rapidly calculated with the Henderson?s rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix?vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of A22 with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations. Copyright © 2016. American Society of Animal Science. 653 $aCOMPUTATION 653 $aGENOMIC SELECTION 653 $aINVERSION 653 $aNUMERATOR RELATIONSHIP MATRIX 653 $aPRECONDITIONED CONJUGATE GRADIENT 653 $aSPARSE MATRIX 700 1 $aMISZTAL, I. 700 1 $aLEGARRA, A. 700 1 $aTSURUTA, S. 700 1 $aLOURENCO, D.A.L. 700 1 $aFRAGOMENI, B.O. 700 1 $aAGUILAR, I. 773 $tJournal of Animal Science, 2017$gv. 95(1): 49-52.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|