|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha : |
01/10/2014 |
Actualizado : |
09/10/2019 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
RODRIGO, M.J.; ALQUEZAR, B.; ALOS, E.; LADO, J.; ZACARIAS, L. |
Afiliación : |
JOANNA LADO LINDNER, Instituto Nacional de Investigación Agropecuaria (INIA), Uruguay. |
Título : |
Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit. |
Fecha de publicación : |
2013 |
Fuente / Imprenta : |
Scientia Horticulturae, 2013, v.163, no.5, p.46-62. |
ISSN : |
0304-4238 |
DOI : |
10.1016/j.scienta.2013.08.014 |
Idioma : |
Inglés |
Notas : |
Article history: Received 24 May 2013 / Received in revised form 6 August 2013 / Accepted 7 August 2013. |
Contenido : |
ABSTRACT
External colour of Citrus fruits is one of the most important quality traits and a decisive factor for consumer acceptance. Pigmentation of fruit peel is highly diverse among the different species and cultivars of the genus Citrus, ranging from the green of limes to the yellow of lemons, orange in mandarins and sweet oranges, and pink in red grapefruits. Colouration of the peel is due to the presence of two main pigments: chlorophylls which provide green colour, and carotenoids, which are responsible for the characteristic colouration of mature fruits of most species and cultivars. Anthocyanins are a third group of pigments,
providing a red to purple tint, in a speci?c group, blood oranges, and mainly restricted to the ?esh. Chlorophylls and carotenoids are isoprenoid-derived pigments, synthesized and accumulated in plastids and, therefore, changes in these compounds during natural ripening are driven by the transformation of chloroplasts into chromoplasts. Most of the structural genes involved in chlorophylls and carotenoids metabolism have been characterized in Citrus, concluding that content and composition of these pigments are mostly genetically determined, and highly regulated at the transcriptional level. However, other mechanisms such as post-transcriptional regulation, the formation of speci?c suborganellar structures or stabilizing-complexes may also operate. Environmental factors, such as light and temperature, are known to play critical in?uence in the development of colouration and that biochemical and molecular bases of their action are being elucidated. Moreover, nutritional status (mainly nitrogen and sugars) is a key determinant of the rate and intensity of peel colouration. The consensus hypothesis establishes that peel colouration is governed by environmental and nutritional factors acting throughout the action of different hormonal signals. In this review we summarize content and composition of main pigments in the peel of fruits of relevant Citrus species and varieties. A comprehensive overview of metabolic pathways implicated in the metabolism of the main pigments, with emphasis on the key regulatory steps, gene expression and their regulation during fruit ripening and in response to environmental, nutritional and hormonal signals is critically revised and discussed.
© 2013 Elsevier B.V. All rights reserved. MenosABSTRACT
External colour of Citrus fruits is one of the most important quality traits and a decisive factor for consumer acceptance. Pigmentation of fruit peel is highly diverse among the different species and cultivars of the genus Citrus, ranging from the green of limes to the yellow of lemons, orange in mandarins and sweet oranges, and pink in red grapefruits. Colouration of the peel is due to the presence of two main pigments: chlorophylls which provide green colour, and carotenoids, which are responsible for the characteristic colouration of mature fruits of most species and cultivars. Anthocyanins are a third group of pigments,
providing a red to purple tint, in a speci?c group, blood oranges, and mainly restricted to the ?esh. Chlorophylls and carotenoids are isoprenoid-derived pigments, synthesized and accumulated in plastids and, therefore, changes in these compounds during natural ripening are driven by the transformation of chloroplasts into chromoplasts. Most of the structural genes involved in chlorophylls and carotenoids metabolism have been characterized in Citrus, concluding that content and composition of these pigments are mostly genetically determined, and highly regulated at the transcriptional level. However, other mechanisms such as post-transcriptional regulation, the formation of speci?c suborganellar structures or stabilizing-complexes may also operate. Environmental factors, such as light and temperature, are known to play critical in?uence in the ... Presentar Todo |
Palabras claves : |
Carotenoids; Chlorophylls; Citrus fruit; Pigmentation; Plastid; Transcriptional regulation. |
Thesagro : |
CITRUS. |
Asunto categoría : |
F30 Genética vegetal y fitomejoramiento |
Marc : |
LEADER 03278naa a2200289 a 4500 001 1050768 005 2019-10-09 008 2013 bl uuuu u00u1 u #d 022 $a0304-4238 024 7 $a10.1016/j.scienta.2013.08.014$2DOI 100 1 $aRODRIGO, M.J. 245 $aBiochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit.$h[electronic resource] 260 $c2013 500 $aArticle history: Received 24 May 2013 / Received in revised form 6 August 2013 / Accepted 7 August 2013. 520 $aABSTRACT External colour of Citrus fruits is one of the most important quality traits and a decisive factor for consumer acceptance. Pigmentation of fruit peel is highly diverse among the different species and cultivars of the genus Citrus, ranging from the green of limes to the yellow of lemons, orange in mandarins and sweet oranges, and pink in red grapefruits. Colouration of the peel is due to the presence of two main pigments: chlorophylls which provide green colour, and carotenoids, which are responsible for the characteristic colouration of mature fruits of most species and cultivars. Anthocyanins are a third group of pigments, providing a red to purple tint, in a speci?c group, blood oranges, and mainly restricted to the ?esh. Chlorophylls and carotenoids are isoprenoid-derived pigments, synthesized and accumulated in plastids and, therefore, changes in these compounds during natural ripening are driven by the transformation of chloroplasts into chromoplasts. Most of the structural genes involved in chlorophylls and carotenoids metabolism have been characterized in Citrus, concluding that content and composition of these pigments are mostly genetically determined, and highly regulated at the transcriptional level. However, other mechanisms such as post-transcriptional regulation, the formation of speci?c suborganellar structures or stabilizing-complexes may also operate. Environmental factors, such as light and temperature, are known to play critical in?uence in the development of colouration and that biochemical and molecular bases of their action are being elucidated. Moreover, nutritional status (mainly nitrogen and sugars) is a key determinant of the rate and intensity of peel colouration. The consensus hypothesis establishes that peel colouration is governed by environmental and nutritional factors acting throughout the action of different hormonal signals. In this review we summarize content and composition of main pigments in the peel of fruits of relevant Citrus species and varieties. A comprehensive overview of metabolic pathways implicated in the metabolism of the main pigments, with emphasis on the key regulatory steps, gene expression and their regulation during fruit ripening and in response to environmental, nutritional and hormonal signals is critically revised and discussed. © 2013 Elsevier B.V. All rights reserved. 650 $aCITRUS 653 $aCarotenoids 653 $aChlorophylls 653 $aCitrus fruit 653 $aPigmentation 653 $aPlastid 653 $aTranscriptional regulation 700 1 $aALQUEZAR, B. 700 1 $aALOS, E. 700 1 $aLADO, J. 700 1 $aZACARIAS, L. 773 $tScientia Horticulturae, 2013$gv.163, no.5, p.46-62.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas; INIA Treinta y Tres. |
Fecha actual : |
25/01/2019 |
Actualizado : |
22/12/2020 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
Internacional - -- |
Autor : |
PRAVIA, V.; KEMANIAN, A. R.; TERRA, J.A.; SHI, Y.; MACEDO, I.; GOSLEE, S. |
Afiliación : |
MARIA VIRGINIA PRAVIA NIN, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; ARMEN R. KEMANIAN, Department of Plant Science, The Pennsylvania State University, USA.; JOSÉ ALFREDO TERRA FERNÁNDEZ, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; YUNING SHI, Department of Ecosystem Science and Management, The Pennsylvania State University, USA.; IGNACIO MACEDO YAPOR, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; SARAH GOSLEE, Pasture Systems and Watershed Management Research Unit, USDA-ARS, USA. |
Título : |
Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations. |
Fecha de publicación : |
2019 |
Fuente / Imprenta : |
Agricultural Systems, May 2019, volume 171, pages 13-22. |
ISSN : |
0308-521X |
DOI : |
10.1016/j.agsy.2018.11.001 |
Idioma : |
Inglés |
Notas : |
Article history: Received 30 December 2017 // Received in revised form 2 November 2018 // Accepted 2 November 2018.
Funding for this work was provided by the Instituto Nacional de Investigación Agropecuaria (INIA-Uruguay) and the USDA-ARS Research Agreement Contract #58-1902-1-165 (Modeling of multispecies pasture growth and management). Appendices. |
Contenido : |
ABSTRACT.
Agricultural systems integrating perennial grass-legume pastures in rotation with grain crops sustain high crop yields while preserving soil organic carbon (Cs) with low nitrogen (N) fertilizer inputs. We hypothesize that Cs saturation in the topsoil may explain the favorable C and N cycling in these systems. We tested this hypothesis by evaluating and simulating three contrasting crop and pasture rotational systems from a 20-year no-till experiment in Treinta y Tres, Uruguay. The systems were: 1) Continuous annual cropping (CC); 2) crop-pasture rotation with two years of crops and four years of pastures (CP); and 3) perennial pasture (PP). Using the Cycles agroecosystems model, we evaluated the inclusion or exclusion of a Cs saturation algorithm. The model simulated forage, soybean, and sorghum grain yields correctly, with low root mean square error (RMSE) of 1.5, 0.7 and 1.0 Mg ha−1, respectively. Measurements show Cs accretion and Cs decline for the first and second half of the experiment, respectively. The Cs accretion rate was highest for PP, while the Cs decline was highest for CC (1.3 vs −0.6 Mg ha−1 y−1 of C). The model captured this Cs dynamics and performed better when using the Cs saturation algorithm than when excluding it (RMSE 4.7 vs 6.8 Mg C ha−1 and relative RMSE of 14% and 21% for the top 15-cm). The model with saturation simulated subsoil Cs distribution with depth well, and simulated faster N turnover and greater N availability for the subsequent grain crop in CP vs CC. The results suggest that Cs saturation, and by extension soil organic N saturation, underpin the sustainability of crop-pasture rotations, and that modeling Cs saturation dynamics can be critical to reliably simulate complex crop-pasture rotational systems.
© 2018 Elsevier Ltd MenosABSTRACT.
Agricultural systems integrating perennial grass-legume pastures in rotation with grain crops sustain high crop yields while preserving soil organic carbon (Cs) with low nitrogen (N) fertilizer inputs. We hypothesize that Cs saturation in the topsoil may explain the favorable C and N cycling in these systems. We tested this hypothesis by evaluating and simulating three contrasting crop and pasture rotational systems from a 20-year no-till experiment in Treinta y Tres, Uruguay. The systems were: 1) Continuous annual cropping (CC); 2) crop-pasture rotation with two years of crops and four years of pastures (CP); and 3) perennial pasture (PP). Using the Cycles agroecosystems model, we evaluated the inclusion or exclusion of a Cs saturation algorithm. The model simulated forage, soybean, and sorghum grain yields correctly, with low root mean square error (RMSE) of 1.5, 0.7 and 1.0 Mg ha−1, respectively. Measurements show Cs accretion and Cs decline for the first and second half of the experiment, respectively. The Cs accretion rate was highest for PP, while the Cs decline was highest for CC (1.3 vs −0.6 Mg ha−1 y−1 of C). The model captured this Cs dynamics and performed better when using the Cs saturation algorithm than when excluding it (RMSE 4.7 vs 6.8 Mg C ha−1 and relative RMSE of 14% and 21% for the top 15-cm). The model with saturation simulated subsoil Cs distribution with depth well, and simulated faster N turnover and greater N a... Presentar Todo |
Palabras claves : |
AGROECOSYSTEM MODELING; CROP PASTURE INTERSEEDNG; LONG-TERM EXPERIMENTS; SOIL ORGANIC MATTER. |
Thesagro : |
CARBONO ORGANICO DEL SUELO. |
Asunto categoría : |
-- P34 Biología del suelo |
Marc : |
LEADER 03007naa a2200277 a 4500 001 1059451 005 2020-12-22 008 2019 bl uuuu u00u1 u #d 022 $a0308-521X 024 7 $a10.1016/j.agsy.2018.11.001$2DOI 100 1 $aPRAVIA, V. 245 $aSoil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations.$h[electronic resource] 260 $c2019 500 $aArticle history: Received 30 December 2017 // Received in revised form 2 November 2018 // Accepted 2 November 2018. Funding for this work was provided by the Instituto Nacional de Investigación Agropecuaria (INIA-Uruguay) and the USDA-ARS Research Agreement Contract #58-1902-1-165 (Modeling of multispecies pasture growth and management). Appendices. 520 $aABSTRACT. Agricultural systems integrating perennial grass-legume pastures in rotation with grain crops sustain high crop yields while preserving soil organic carbon (Cs) with low nitrogen (N) fertilizer inputs. We hypothesize that Cs saturation in the topsoil may explain the favorable C and N cycling in these systems. We tested this hypothesis by evaluating and simulating three contrasting crop and pasture rotational systems from a 20-year no-till experiment in Treinta y Tres, Uruguay. The systems were: 1) Continuous annual cropping (CC); 2) crop-pasture rotation with two years of crops and four years of pastures (CP); and 3) perennial pasture (PP). Using the Cycles agroecosystems model, we evaluated the inclusion or exclusion of a Cs saturation algorithm. The model simulated forage, soybean, and sorghum grain yields correctly, with low root mean square error (RMSE) of 1.5, 0.7 and 1.0 Mg ha−1, respectively. Measurements show Cs accretion and Cs decline for the first and second half of the experiment, respectively. The Cs accretion rate was highest for PP, while the Cs decline was highest for CC (1.3 vs −0.6 Mg ha−1 y−1 of C). The model captured this Cs dynamics and performed better when using the Cs saturation algorithm than when excluding it (RMSE 4.7 vs 6.8 Mg C ha−1 and relative RMSE of 14% and 21% for the top 15-cm). The model with saturation simulated subsoil Cs distribution with depth well, and simulated faster N turnover and greater N availability for the subsequent grain crop in CP vs CC. The results suggest that Cs saturation, and by extension soil organic N saturation, underpin the sustainability of crop-pasture rotations, and that modeling Cs saturation dynamics can be critical to reliably simulate complex crop-pasture rotational systems. © 2018 Elsevier Ltd 650 $aCARBONO ORGANICO DEL SUELO 653 $aAGROECOSYSTEM MODELING 653 $aCROP PASTURE INTERSEEDNG 653 $aLONG-TERM EXPERIMENTS 653 $aSOIL ORGANIC MATTER 700 1 $aKEMANIAN, A. R. 700 1 $aTERRA, J.A. 700 1 $aSHI, Y. 700 1 $aMACEDO, I. 700 1 $aGOSLEE, S. 773 $tAgricultural Systems, May 2019, volume 171, pages 13-22.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|