|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas; INIA Treinta y Tres. |
Fecha : |
12/11/2015 |
Actualizado : |
09/10/2019 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
MARCAIDA, M.; ASSENG, S.; EWERT, F.; BASSU, S.; DURAND, J.L.; LI, T.; MARTRE, P.; ADAM, M.; AGGARWAL, P.K.; ANGULO, C.; BARON, C.; BASSO, B.; BERTUZZI, P.; BIERNATH, C.; BOOGAARD, H.; BOOTE, K.J.; BOUMAN, B.; BREGAGLIO, S.; BRISSON, N.; BUIS, S.; CAMMARANO, D.; CHALLINOR, A.J.; CONFALONIERI, R.; CONIJN, J.G.; CORBEELS, M.; DERYNG, D.; DE SANCTIS, G.; DOLTRA, J.; FUMOTO, T.; GAYDON, D.; GAYLER, S.; GOLDBERG, R.; GRANT, R.F.; GRASSINI, P.; HATFIELD, J.L.; HASEGAWA, T.; HENG, L.; HOEK, S.; HOOKER, J.; HUNT, L.A.; INGWERSEN, J.; IZAURRALDE, R.C.; JONGSCHAAP, R.E.E.; JONES, J.W.; KEMANIAN, R.A.; KERSEBAUM, K.C.; KIM, S.-H.; LIZASO, J.; MÜLLER, C.; NAKAGAWA, H.; NARESH KUMAR, S.; NENDEL, C.; O'LEARY, G.J.; OLESEN, J.E.; ORIOL, P.; OSBORNE, T.M.; PALOSUO, T.; PRAVIA, V.; PRIESACK, E.; RIPOCHE, D.; ROSENZWEIG, C.; RUANE, A.C.; RUGET, F.; SAU, F.; SEMENOV, M.A.; SHCHERBAK, I.; SINGH, B.; SINGH, U.; SOO, H.K.; STEDUTO, P.; STÖCKLE, C.; STRATONOVITCH, P.; STRECK, T.; SUPIT, I.; TANG, L.; TAO, F.; TEIXEIRA, E.I.; THORBURN, P.; TIMLIN, D.; TRAVASSO, M.; RÖTTER, R.P.; WAHA, K.; WALLACH, D.; WHITE, J.W.; WILKENS, P.; WILLIAMS, J.R.; WOLF, J.; YIN, X.; YOSHIDA, H.; ZHANG, Z.; ZHU, Y. |
Afiliación : |
MARIA VIRGINIA PRAVIA NIN, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay. |
Título : |
A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. |
Fecha de publicación : |
2015 |
Fuente / Imprenta : |
Agricultural and Forest Meteorology, 2015, v.214-215, p. 483-493. |
ISSN : |
0168-1923 |
DOI : |
10.1016/j.agrformet.2015.09.013 |
Idioma : |
Inglés |
Notas : |
Article history: Received 6 March 2015 / Received in revised form 29 July 2015 / Accepted 20 September 2015 / Available online 1 October 2015. |
Contenido : |
ABSTRACT.
Ensembles of process-based crop models are increasingly used to simulate crop growth for scenariosof temperature and/or precipitation changes corresponding to different projections of atmospheric CO2concentrations. This approach generates large datasets with thousands of simulated crop yield data. Suchdatasets potentially provide new information but it is difficult to summarize them in a useful way due totheir structural complexities. An associated issue is that it is not straightforward to compare crops and tointerpolate the results to alternative climate scenarios not initially included in the simulation protocols.Here we demonstrate that statistical models based on random-coefficient regressions are able to emulateensembles of process-based crop models. An important advantage of the proposed statistical models isthat they can interpolate between temperature levels and between CO2concentration levels, and canthus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without re-running the original complex crop models. Our approach is illustrated with three yield datasets simulatedby 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to thesedatasets, and are then used to analyze the variability of the yield response to [CO2] and temperature.Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effectof a temperature increase of +2◦C in the considered sites. Compared to wheat, required levels of [CO2]increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulatingclimate change impacts increase more with temperature than with elevated [CO2].
© 2015 Elsevier B.V. All rights reserved. MenosABSTRACT.
Ensembles of process-based crop models are increasingly used to simulate crop growth for scenariosof temperature and/or precipitation changes corresponding to different projections of atmospheric CO2concentrations. This approach generates large datasets with thousands of simulated crop yield data. Suchdatasets potentially provide new information but it is difficult to summarize them in a useful way due totheir structural complexities. An associated issue is that it is not straightforward to compare crops and tointerpolate the results to alternative climate scenarios not initially included in the simulation protocols.Here we demonstrate that statistical models based on random-coefficient regressions are able to emulateensembles of process-based crop models. An important advantage of the proposed statistical models isthat they can interpolate between temperature levels and between CO2concentration levels, and canthus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without re-running the original complex crop models. Our approach is illustrated with three yield datasets simulatedby 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to thesedatasets, and are then used to analyze the variability of the yield response to [CO2] and temperature.Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effectof a temperature increase of +2◦C in... Presentar Todo |
Palabras claves : |
Climate change; CROP MODEL; Emulator; MAIZE; Meta-model; MODELIZACIÓN DE LOS CULTIVOS; RICE; Statistical model; WHEAT; Yield. |
Thesagro : |
ARROZ; CAMBIO CLIMÁTICO; MAÍZ; MODELOS ESTADISTICOS; TRIGO. |
Asunto categoría : |
A50 Investigación agraria |
Marc : |
LEADER 05363naa a2201417 a 4500 001 1053856 005 2019-10-09 008 2015 bl uuuu u00u1 u #d 022 $a0168-1923 024 7 $a10.1016/j.agrformet.2015.09.013$2DOI 100 1 $aMARCAIDA, M. 245 $aA statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. 260 $c2015 500 $aArticle history: Received 6 March 2015 / Received in revised form 29 July 2015 / Accepted 20 September 2015 / Available online 1 October 2015. 520 $aABSTRACT. Ensembles of process-based crop models are increasingly used to simulate crop growth for scenariosof temperature and/or precipitation changes corresponding to different projections of atmospheric CO2concentrations. This approach generates large datasets with thousands of simulated crop yield data. Suchdatasets potentially provide new information but it is difficult to summarize them in a useful way due totheir structural complexities. An associated issue is that it is not straightforward to compare crops and tointerpolate the results to alternative climate scenarios not initially included in the simulation protocols.Here we demonstrate that statistical models based on random-coefficient regressions are able to emulateensembles of process-based crop models. An important advantage of the proposed statistical models isthat they can interpolate between temperature levels and between CO2concentration levels, and canthus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without re-running the original complex crop models. Our approach is illustrated with three yield datasets simulatedby 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to thesedatasets, and are then used to analyze the variability of the yield response to [CO2] and temperature.Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effectof a temperature increase of +2◦C in the considered sites. Compared to wheat, required levels of [CO2]increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulatingclimate change impacts increase more with temperature than with elevated [CO2]. © 2015 Elsevier B.V. All rights reserved. 650 $aARROZ 650 $aCAMBIO CLIMÁTICO 650 $aMAÍZ 650 $aMODELOS ESTADISTICOS 650 $aTRIGO 653 $aClimate change 653 $aCROP MODEL 653 $aEmulator 653 $aMAIZE 653 $aMeta-model 653 $aMODELIZACIÓN DE LOS CULTIVOS 653 $aRICE 653 $aStatistical model 653 $aWHEAT 653 $aYield 700 1 $aASSENG, S. 700 1 $aEWERT, F. 700 1 $aBASSU, S. 700 1 $aDURAND, J.L. 700 1 $aLI, T. 700 1 $aMARTRE, P. 700 1 $aADAM, M. 700 1 $aAGGARWAL, P.K. 700 1 $aANGULO, C. 700 1 $aBARON, C. 700 1 $aBASSO, B. 700 1 $aBERTUZZI, P. 700 1 $aBIERNATH, C. 700 1 $aBOOGAARD, H. 700 1 $aBOOTE, K.J. 700 1 $aBOUMAN, B. 700 1 $aBREGAGLIO, S. 700 1 $aBRISSON, N. 700 1 $aBUIS, S. 700 1 $aCAMMARANO, D. 700 1 $aCHALLINOR, A.J. 700 1 $aCONFALONIERI, R. 700 1 $aCONIJN, J.G. 700 1 $aCORBEELS, M. 700 1 $aDERYNG, D. 700 1 $aDE SANCTIS, G. 700 1 $aDOLTRA, J. 700 1 $aFUMOTO, T. 700 1 $aGAYDON, D. 700 1 $aGAYLER, S. 700 1 $aGOLDBERG, R. 700 1 $aGRANT, R.F. 700 1 $aGRASSINI, P. 700 1 $aHATFIELD, J.L. 700 1 $aHASEGAWA, T. 700 1 $aHENG, L. 700 1 $aHOEK, S. 700 1 $aHOOKER, J. 700 1 $aHUNT, L.A. 700 1 $aINGWERSEN, J. 700 1 $aIZAURRALDE, R.C. 700 1 $aJONGSCHAAP, R.E.E. 700 1 $aJONES, J.W. 700 1 $aKEMANIAN, R.A. 700 1 $aKERSEBAUM, K.C. 700 1 $aKIM, S.-H. 700 1 $aLIZASO, J. 700 1 $aMÜLLER, C. 700 1 $aNAKAGAWA, H. 700 1 $aNARESH KUMAR, S. 700 1 $aNENDEL, C. 700 1 $aO'LEARY, G.J. 700 1 $aOLESEN, J.E. 700 1 $aORIOL, P. 700 1 $aOSBORNE, T.M. 700 1 $aPALOSUO, T. 700 1 $aPRAVIA, V. 700 1 $aPRIESACK, E. 700 1 $aRIPOCHE, D. 700 1 $aROSENZWEIG, C. 700 1 $aRUANE, A.C. 700 1 $aRUGET, F. 700 1 $aSAU, F. 700 1 $aSEMENOV, M.A. 700 1 $aSHCHERBAK, I. 700 1 $aSINGH, B. 700 1 $aSINGH, U. 700 1 $aSOO, H.K. 700 1 $aSTEDUTO, P. 700 1 $aSTÖCKLE, C. 700 1 $aSTRATONOVITCH, P. 700 1 $aSTRECK, T. 700 1 $aSUPIT, I. 700 1 $aTANG, L. 700 1 $aTAO, F. 700 1 $aTEIXEIRA, E.I. 700 1 $aTHORBURN, P. 700 1 $aTIMLIN, D. 700 1 $aTRAVASSO, M. 700 1 $aRÖTTER, R.P. 700 1 $aWAHA, K. 700 1 $aWALLACH, D. 700 1 $aWHITE, J.W. 700 1 $aWILKENS, P. 700 1 $aWILLIAMS, J.R. 700 1 $aWOLF, J. 700 1 $aYIN, X. 700 1 $aYOSHIDA, H. 700 1 $aZHANG, Z. 700 1 $aZHU, Y. 773 $tAgricultural and Forest Meteorology, 2015$gv.214-215, p. 483-493.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha actual : |
03/09/2019 |
Actualizado : |
03/09/2019 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
Internacional - -- |
Autor : |
MONTOYA, F.; OTERO, A. |
Afiliación : |
FRANCISCO MONTOYA, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; ALVARO RICARDO OTERO CAMA, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay. |
Título : |
Is Irrigating Soybean Profitable In Uruguay? A Modeling Approach. |
Complemento del título : |
Climatology and Water Management. |
Fecha de publicación : |
2019 |
Fuente / Imprenta : |
Agronomy Journal, 2019, vol. 111: 2: 749-763. |
DOI : |
10.2134/agronj2018.05.0300 |
Idioma : |
Inglés |
Notas : |
Article history: Received: May 04, 2018 / Accepted: Oct 31, 2018 / Published: January 10, 2019.
Supplemental material. |
Contenido : |
ABSTRACT.
Use of climatic models to predict the El Niño/Southern Oscillation (ENSO) cycle coupled with decision support system tools can optimize management of the major crops grown in South America. AquaCrop model was applied in this paper based on field data from a soybean deficit irrigation trial in the northwestern region of Uruguay. The AquaCrop model was suitable for simulating the biomass and yield at harvest, as well as the soil water content of the soybean crop root zone, with an acceptable goodness of fit (Willmott aggregation index [IoA] > 0.80) and low estimation errors (NRMSE < 20%). After calibration and validation, AquaCrop was used to simulate 35 characteristic years for this area to analyze soybean production under irrigation and rainfed conditions, as well as to study the effect of different sowing dates and the ENSO cycle on soybean yield. This research concluded that irrigation would significantly increase the crop yield, providing stable yields for farm systems regardless of the sowing date and the ENSO cycle considered. Additionally, irrigation reducing the dependence on favorable weather for planting, allowing more flexibility in sowing date for growers. The calculated profit margins were between 6 to 36% higher using irrigation than under rainfed conditions when soybean sale price was higher than 275 US$ t?1. With lower soybean sale price, the rainfed crop may be the most desirable option for growers regardless of ENSO cycle.
Copyright © 2019 by the American Society of Agronomy, Inc. MenosABSTRACT.
Use of climatic models to predict the El Niño/Southern Oscillation (ENSO) cycle coupled with decision support system tools can optimize management of the major crops grown in South America. AquaCrop model was applied in this paper based on field data from a soybean deficit irrigation trial in the northwestern region of Uruguay. The AquaCrop model was suitable for simulating the biomass and yield at harvest, as well as the soil water content of the soybean crop root zone, with an acceptable goodness of fit (Willmott aggregation index [IoA] > 0.80) and low estimation errors (NRMSE < 20%). After calibration and validation, AquaCrop was used to simulate 35 characteristic years for this area to analyze soybean production under irrigation and rainfed conditions, as well as to study the effect of different sowing dates and the ENSO cycle on soybean yield. This research concluded that irrigation would significantly increase the crop yield, providing stable yields for farm systems regardless of the sowing date and the ENSO cycle considered. Additionally, irrigation reducing the dependence on favorable weather for planting, allowing more flexibility in sowing date for growers. The calculated profit margins were between 6 to 36% higher using irrigation than under rainfed conditions when soybean sale price was higher than 275 US$ t?1. With lower soybean sale price, the rainfed crop may be the most desirable option for growers regardless of ENSO cycle.
Copyright © 2019 by the A... Presentar Todo |
Palabras claves : |
El Niño/Southern Oscillation (ENSO); ENSO. |
Thesagro : |
SOJA. |
Asunto categoría : |
-- |
Marc : |
LEADER 02193naa a2200193 a 4500 001 1060134 005 2019-09-03 008 2019 bl uuuu u00u1 u #d 024 7 $a10.2134/agronj2018.05.0300$2DOI 100 1 $aMONTOYA, F. 245 $aIs Irrigating Soybean Profitable In Uruguay? A Modeling Approach.$h[electronic resource] 260 $c2019 500 $aArticle history: Received: May 04, 2018 / Accepted: Oct 31, 2018 / Published: January 10, 2019. Supplemental material. 520 $aABSTRACT. Use of climatic models to predict the El Niño/Southern Oscillation (ENSO) cycle coupled with decision support system tools can optimize management of the major crops grown in South America. AquaCrop model was applied in this paper based on field data from a soybean deficit irrigation trial in the northwestern region of Uruguay. The AquaCrop model was suitable for simulating the biomass and yield at harvest, as well as the soil water content of the soybean crop root zone, with an acceptable goodness of fit (Willmott aggregation index [IoA] > 0.80) and low estimation errors (NRMSE < 20%). After calibration and validation, AquaCrop was used to simulate 35 characteristic years for this area to analyze soybean production under irrigation and rainfed conditions, as well as to study the effect of different sowing dates and the ENSO cycle on soybean yield. This research concluded that irrigation would significantly increase the crop yield, providing stable yields for farm systems regardless of the sowing date and the ENSO cycle considered. Additionally, irrigation reducing the dependence on favorable weather for planting, allowing more flexibility in sowing date for growers. The calculated profit margins were between 6 to 36% higher using irrigation than under rainfed conditions when soybean sale price was higher than 275 US$ t?1. With lower soybean sale price, the rainfed crop may be the most desirable option for growers regardless of ENSO cycle. Copyright © 2019 by the American Society of Agronomy, Inc. 650 $aSOJA 653 $aEl Niño/Southern Oscillation (ENSO) 653 $aENSO 700 1 $aOTERO, A. 773 $tAgronomy Journal, 2019, vol. 111: 2: 749-763.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|