Ainfo Consulta

Catálogo de Información Agropecuaria

Bibliotecas INIA

 

Botón Actualizar


Botón Actualizar

Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy.
Registro completo
Biblioteca (s) :  INIA Las Brujas.
Fecha :  24/11/2022
Actualizado :  25/11/2022
Tipo de producción científica :  Artículos en Revistas Indexadas Internacionales
Autor :  BRANCATTI, G.; GARMENDIA, G.; PEREYRA, S.; VERO, S.
Afiliación :  GIANELLA BRANCATTI, Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay; GABRIELA GARMENDIA, Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay; SILVIA ANTONIA PEREYRA CORREA, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; SILVANA VERO, Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
Título :  Current species composition of Fusarium population affecting the main wheat-growing regions in Uruguay and evolution of their sensitivity to triazoles after long-term application.
Fecha de publicación :  2022
Fuente / Imprenta :  International Journal of Pest Management, 2022, vol. 68, issue 4: "Uruguayan Society of Phytopathology (SUFIT): Plant protection for a sustainable agriculture", p.349-358. doi: https://doi.org/10.1080/09670874.2022.2129509
ISSN :  1366-5863 (online)
DOI :  10.1080/09670874.2022.2129509
Idioma :  Inglés
Notas :  Article history: Received 03 May 2022, Accepted 14 September 2022, Published online: 11 November 2022. -- Corresponding author: Gianella Brancatti - mailto: gia@fcien.edu.uy , Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, 11800, Montevideo, Uruguay. -- Funding: This work was supported by the Agencia Nacional de Investigación e Innovación and Comisión Académica de Posgrado.
Contenido :  ABSTRACT.- Fusarium head blight (FHB) is a destructive disease of cereal grains caused by several Fusarium species, of which Fusarium graminearum is considered the primary causal agent. In this work 586 pure cultures of Fusarium spp. were obtained from infected grains, of which 64.9% belonged to the Fusarium graminearum species complex. 96.4% of those isolates had 15-acetyldeoxynivalenol genotype and the rest exhibited Nivalenol genotype. The second most predominant species was F. poae (19.1%) followed by F. avenaceum (8.2%) and F. tricinctum (4.6%). An increase in the tolerance to tebuconazole of Uruguayan Fusarium spp. isolates was detected.© 2022 Informa UK Limited, trading as Taylor & Francis Group
Palabras claves :  Fungicide sensitivity; Fusarium graminearum; Fusarium head blight; Triazoles; Wheat.
Asunto categoría :  H20 Enfermedades de las plantas
Marc :  Presentar Marc Completo
Registro original :  INIA Las Brujas (LB)
Biblioteca Identificación Origen Tipo / Formato Clasificación Cutter Registro Volumen Estado
LB103264 - 1PXIAP - DDInt. Jr. Pest Management/SUFIT/2022

Volver


Botón Actualizar


Botón Actualizar

Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy.
Registro completo
Biblioteca (s) :  INIA Las Brujas.
Fecha actual :  23/02/2024
Actualizado :  23/02/2024
Tipo de producción científica :  Artículos en Revistas Indexadas Internacionales
Circulación / Nivel :  Internacional - --
Autor :  PARUELO, J.; TEXEIRA, M.; TOMASEL, F.
Afiliación :  JOSÉ PARUELO, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina; IECA, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; MARCOS TEXEIRA, IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina; FERNANDO TOMASEL, Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States.
Título :  Hybrid modeling for grassland productivity prediction: A parametric and machine learning technique for grazing management with applicability to digital twin decision systems.
Fecha de publicación :  2024
Fuente / Imprenta :  Agricultural Systems. 2024. Volume 214, article 103847. https://doi.org/10.1016/j.agsy.2023.103847
ISSN :  0308-521X
DOI :  10.1016/j.agsy.2023.103847
Idioma :  Inglés
Notas :  Article history: Received 1 August 2023; Received in revised form 5 December 2023; Accepted 18 December 2023; Available online 28 December 2023. -- Correspondence: Paruelo, J.M.; Instituto Nacional de Investigación Agropecuaria, INIA, La Estanzuela, Ruta 50 km 11, Colonia, Uruguay; email:jparuelo@inia.org.uy -- Funding: This work was supported by grants from ANII (Uruguay. FSDA_1_2018_1_154773 and IA_2021_1_04 and IA_2021_1_1010784), CSIC-Universidad de la República - Uruguay (Programa I + D Grupos 2018-433), Universidad de Buenos Aires (Argentina) and CONICET (2021-2024. PIP-2021. 11220200100956CO01). -- Supplementary data: https://doi.org/10.1016/j.agsy.2023.103847 --
Contenido :  ABSTRACT.- CONTEXT: Monitoring Aboveground Net Primary Production (ANPP) is critical to assess not only the current ecosystem status but also its long-term dynamics. In rangelands, the seasonal dynamics of ANPP determines forage availability, stock density, and livestock productivity. OBJECTIVE: To develop a hybrid model to be used as a prediction engine for ANPP in the native grasslands of Uruguay. The model combines a parametric component based on the seasonal dynamics of ANPP, and an artificial neural network (ANN) component used to model the remaining non-linearities, which are mainly related to precipitation and temperature variability. The output of hybrid model is proposed as the "virtual entity" of a digital twin support decision system where the "physical entity" is characterized by a collection of bi-weekly (fortnight) ANPP estimates. METHODS: Fortnight ANPP data were calculated from MODIS EVI for the 2001-2020 period. A sigmoidal functional response, having three parameters with an explicit biological interpretation, was fitted to the accumulated ANPP as a function of time. Forecasts were generated by extrapolating the sigmoidal functional response fit up to four fortnights ahead. From these fits, we obtained the fortnight ANPP values by differentiating the accumulated fortnight ANPP. Predictions (up to four fortnights) were generated for each fortnight and year. The residuals from these fits were modeled using a multilayer perceptron trained by backpropagation us... Presentar Todo
Palabras claves :  Agroecological transitions; ANPP; Artificial neural networks; Grasslands; Remote sensing; Uruguay.
Asunto categoría :  --
Marc :  Presentar Marc Completo
Registro original :  INIA Las Brujas (LB)
Biblioteca Identificación Origen Tipo / Formato Clasificación Cutter Registro Volumen Estado
LB103818 - 1PXIAP - DDAgricultural Systems/2024
Volver
Expresión de búsqueda válido. Check!
 
 

Embrapa
Todos los derechos reservados, conforme Ley n° 9.610
Política de Privacidad
Área Restricta

Instituto Nacional de Investigación Agropecuaria
Andes 1365 - piso 12 CP 11100 Montevideo, Uruguay
Tel: +598 2902 0550 Fax: +598 2902 3666
bibliotecas@inia.org.uy

Valid HTML 4.01 Transitional