|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha : |
07/02/2023 |
Actualizado : |
07/02/2023 |
Tipo de producción científica : |
Capítulo en Libro Técnico-Científico |
Autor : |
FARIÑA, L.; BOIDO, E.; ARES, G.; GONZALEZ, N.; LADO, J.; CURBELO, R.; ALMEIDA, L.; MEDINA, K.; CARRAU, F.; DELLACASSA, E, |
Afiliación : |
LAURA FARIÑA, Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Av. General Flores 2124, 11800 Montevideo, Uruguay; EDUARDO BOIDO, a Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Los Alimentos, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, 11800, Uruguay; GASTÓN ARES, Sensometría y Ciencia Del Consumidor, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Rutas 8 y 101 s/n, Canelones, Pando, 91000, Uruguay; NOELA GONZALEZ, Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Los Alimentos, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, 11800, Uruguay; JOANNA LADO LINDNER, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; ROMINA CURBELO, Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, 11800, Uruguay; LUCÍA ALMEIDA, Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Los Alimentos, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, 11800, Uruguay; KARINA MEDINA, Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Los Alimentos, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, 11800, Uruguay; FRANCISCO CARRAU, Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de Los Alimentos, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, 11800, Uruguay; EDUARDO DELLACASSA, Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, 11800 Montevideo, Uruguay. |
Título : |
Solid phase microextraction for the characterization of food aroma and particular sensory defects. (Chap.6) |
Fecha de publicación : |
2023 |
Fuente / Imprenta : |
In: ACS Symposium Series, 2023, Volume 1433, Pages 299 - 325. Flavors and Fragrances in Food Processing: Preparation and Characterization Methods. Balakrishnan P., Gopi S. (editors). doi: https://doi.org/10.1021/bk-2022-1433.ch006 |
Serie : |
(ACS Symposium Series; Volume 1433). |
ISSN : |
0097-6156 |
DOI : |
10.1021/bk-2022-1433.ch006 |
Idioma : |
Inglés |
Notas : |
Chapter book history: Publication Date (Web):December 28, 2022 -- Corresponding author: Dellacassa, E.; Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, Uruguay; email:edellac@fq.edu.uy -- Publisher:
American Chemical Society -- Volume editors: Balakrishnan P., Gopi S., ADSO Naturals India, Bangalore, Balakrishnan P., Gopi S., Curesupport Netherlands, Deventer. -- |
Contenido : |
ABSTRACT.- Solid Phase Microextraction or SPME was created to facilitate faster sample preparation, both in the laboratory and wherever the sampling site is located. Solid phase microextraction (SPME) was developed by Pawliszyn's group in 1990 as a solvent-free technique on the basis of adsorption-absorption theory. SPME is based on the principle that analytes are distributed between the sample matrix and the fiber coating. The fiber is built of fused silica and covered with a sorbent (polymeric materials identical to those used as stationary phase in gas chromatography columns). The transport of the analytes from the sample matrix to the fiber begins when the fiber comes into contact with the sample. The analytes are then desorbed by temperature or with an organic solvent. The extraction is complete and satisfactory when the analyte has reached an equilibrium concentration of distribution between the sample and the fiber. Even being experimentally a non-exhaustive extractive technique (it is an equilibrium), SPME has been rapidly adopted as a simple, miniaturized, and green technique, which combines sampling, extraction, concentration, cleanup and sample introduction in a single step. These characteristics transformed SPME in one of the most used techniques for different applications related to analytical chemistry. In this chapter, we will present different number of examples by which SPME focuses in the characterization of both food aroma and frequent odor defects.. © 2023 American Chemical Society. All rights reserved. MenosABSTRACT.- Solid Phase Microextraction or SPME was created to facilitate faster sample preparation, both in the laboratory and wherever the sampling site is located. Solid phase microextraction (SPME) was developed by Pawliszyn's group in 1990 as a solvent-free technique on the basis of adsorption-absorption theory. SPME is based on the principle that analytes are distributed between the sample matrix and the fiber coating. The fiber is built of fused silica and covered with a sorbent (polymeric materials identical to those used as stationary phase in gas chromatography columns). The transport of the analytes from the sample matrix to the fiber begins when the fiber comes into contact with the sample. The analytes are then desorbed by temperature or with an organic solvent. The extraction is complete and satisfactory when the analyte has reached an equilibrium concentration of distribution between the sample and the fiber. Even being experimentally a non-exhaustive extractive technique (it is an equilibrium), SPME has been rapidly adopted as a simple, miniaturized, and green technique, which combines sampling, extraction, concentration, cleanup and sample introduction in a single step. These characteristics transformed SPME in one of the most used techniques for different applications related to analytical chemistry. In this chapter, we will present different number of examples by which SPME focuses in the characterization of both food aroma and frequent odor defects.. © 202... Presentar Todo |
Palabras claves : |
Beverages; Extraction; Fibers; Food processing; Organic compounds; Volatile organic compounds. |
Asunto categoría : |
Q01 Ciencia y tecnología de los alimentos |
Marc : |
LEADER 03189naa a2200349 a 4500 001 1063955 005 2023-02-07 008 2023 bl uuuu u00u1 u #d 022 $a0097-6156 024 7 $a10.1021/bk-2022-1433.ch006$2DOI 100 1 $aFARIÑA, L. 245 $aSolid phase microextraction for the characterization of food aroma and particular sensory defects. (Chap.6)$h[electronic resource] 260 $c2023 490 $a(ACS Symposium Series; Volume 1433). 500 $aChapter book history: Publication Date (Web):December 28, 2022 -- Corresponding author: Dellacassa, E.; Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, Uruguay; email:edellac@fq.edu.uy -- Publisher: American Chemical Society -- Volume editors: Balakrishnan P., Gopi S., ADSO Naturals India, Bangalore, Balakrishnan P., Gopi S., Curesupport Netherlands, Deventer. -- 520 $aABSTRACT.- Solid Phase Microextraction or SPME was created to facilitate faster sample preparation, both in the laboratory and wherever the sampling site is located. Solid phase microextraction (SPME) was developed by Pawliszyn's group in 1990 as a solvent-free technique on the basis of adsorption-absorption theory. SPME is based on the principle that analytes are distributed between the sample matrix and the fiber coating. The fiber is built of fused silica and covered with a sorbent (polymeric materials identical to those used as stationary phase in gas chromatography columns). The transport of the analytes from the sample matrix to the fiber begins when the fiber comes into contact with the sample. The analytes are then desorbed by temperature or with an organic solvent. The extraction is complete and satisfactory when the analyte has reached an equilibrium concentration of distribution between the sample and the fiber. Even being experimentally a non-exhaustive extractive technique (it is an equilibrium), SPME has been rapidly adopted as a simple, miniaturized, and green technique, which combines sampling, extraction, concentration, cleanup and sample introduction in a single step. These characteristics transformed SPME in one of the most used techniques for different applications related to analytical chemistry. In this chapter, we will present different number of examples by which SPME focuses in the characterization of both food aroma and frequent odor defects.. © 2023 American Chemical Society. All rights reserved. 653 $aBeverages 653 $aExtraction 653 $aFibers 653 $aFood processing 653 $aOrganic compounds 653 $aVolatile organic compounds 700 1 $aBOIDO, E. 700 1 $aARES, G. 700 1 $aGONZALEZ, N. 700 1 $aLADO, J. 700 1 $aCURBELO, R. 700 1 $aALMEIDA, L. 700 1 $aMEDINA, K. 700 1 $aCARRAU, F. 700 1 $aDELLACASSA, E, 773 $tIn: ACS Symposium Series, 2023, Volume 1433, Pages 299 - 325. Flavors and Fragrances in Food Processing: Preparation and Characterization Methods. Balakrishnan P., Gopi S. (editors). doi: https://doi.org/10.1021/bk-2022-1433.ch006
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Treinta y Tres. Por información adicional contacte bibliott@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Treinta y Tres. |
Fecha actual : |
10/09/2020 |
Actualizado : |
01/02/2021 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
Internacional - -- |
Autor : |
GARCÍA, L. F.; NÚÑEZ, E.; LACAVA, M.; SILVA, H.; MARTÍNEZ, S.; PÉTILLON, J. |
Afiliación : |
LUIS FERNANDO GARCÍA, Grupo multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este (CURE), UDELAR, Treinta y Tres; ERIKA NÚÑEZ, PDU - Estudios Interdisciplinarios de Sistemas Territoriales Complejos, CENUR Noreste, Universidad de la República, Rivera Uruguay. Programa para el Desarrollo en Ciencias Básicas (PEDECIBA, UDELAR, Montevideo, Uruguay.; MARIÁNGELES LACAVA, PDU Estudios Interdisciplinarios de Sistemas Territoriales Complejos, CENUR Noreste, UDELAR, Rivera, Uruguay.; HORACIO SILVA, Estación Experimental Mario A. Cassinoni, Facultad de Agronomía, UDELAR, Paysandú, Uruguay.; SEBASTIÁN MARTÍNEZ KOPP, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; JULIEN PÉTILLON, UMR CNRS Université de Rennes, Rennes, France. |
Título : |
Experimental assessment of trophic ecology in a generalist spider predator: implications for biocontrol in uruguayan crops. [Original contribution]. |
Fecha de publicación : |
2021 |
Fuente / Imprenta : |
Journal of Applied Entomology, February 2021, Volume145, Issue1-2, p.82-91. Doi: https://doi.org/10.1111/jen.12811 |
ISSN : |
0931-2048 |
DOI : |
doi.org/10.1111/jen.12811 |
Idioma : |
Inglés |
Notas : |
Article history: Received: 22 April 2020; Revised: 15 July 2020; Accepted: 17 July 2020; First published: 05 September 2020. |
Contenido : |
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non‐pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well‐defended arthropods, and their potential use as natural enemies of several pests in South American crops. MenosConservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non‐pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morpho... Presentar Todo |
Palabras claves : |
ARAÑA LOBO; BEHAVIOURAL SEQUENCE; BIOLOGICAL CONTROL; CONDITIONAL PREY ACCEPTANCE; RICE; SOYBEAN; WOLF SPIDER. |
Thesagro : |
ARROZ; CONTROL BIOLÓGICO; SOJA. |
Asunto categoría : |
F01 Cultivo |
Marc : |
LEADER 02792naa a2200337 a 4500 001 1061305 005 2021-02-01 008 2021 bl uuuu u00u1 u #d 022 $a0931-2048 024 7 $adoi.org/10.1111/jen.12811$2DOI 100 1 $aGARCÍA, L. F. 245 $aExperimental assessment of trophic ecology in a generalist spider predator$bimplications for biocontrol in uruguayan crops. [Original contribution].$h[electronic resource] 260 $c2021 500 $aArticle history: Received: 22 April 2020; Revised: 15 July 2020; Accepted: 17 July 2020; First published: 05 September 2020. 520 $aConservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non‐pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well‐defended arthropods, and their potential use as natural enemies of several pests in South American crops. 650 $aARROZ 650 $aCONTROL BIOLÓGICO 650 $aSOJA 653 $aARAÑA LOBO 653 $aBEHAVIOURAL SEQUENCE 653 $aBIOLOGICAL CONTROL 653 $aCONDITIONAL PREY ACCEPTANCE 653 $aRICE 653 $aSOYBEAN 653 $aWOLF SPIDER 700 1 $aNÚÑEZ, E. 700 1 $aLACAVA, M. 700 1 $aSILVA, H. 700 1 $aMARTÍNEZ, S. 700 1 $aPÉTILLON, J. 773 $tJournal of Applied Entomology, February 2021, Volume145, Issue1-2, p.82-91. Doi: https://doi.org/10.1111/jen.12811
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Treinta y Tres (TT) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|