|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha : |
15/03/2023 |
Actualizado : |
27/04/2023 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
KRUK, C.; SEGURA, A.; PIÑEIRO, G.; BALDASSINI, P.; PÉREZ-BECOÑA, L.; GARCÍA-RODRÍGUEZ, F.; PERERA, G.; PICCINI, C. |
Afiliación : |
CARLA KRUK, Instituto de Ecología y Ciencias Ambientales, Facultad Ciencias, Udelar, Uruguay; Media CURE, Udelar, Uruguay; Lab. de Ecología Microbiana Acuática, Dpto. Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay; ANGEL SEGURA, Media CURE, Udelar, Uruguay; GERVASIO PIÑEIRO, LART-IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Departamento de Sistemas Ambientales, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay; PABLO BALDASSINI, LART-IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; LAURA PÉREZ-BECOÑA, Departamento de Geociencias, CURE-Rocha, Rocha, Uruguay; FELIPE GARCÍA-RODRÍGUEZ, Lab. Ecología Microbiana Acuática, Dpto. Microbiología, IIBCE, MEC, Mdeo, Uruguay; Dpto. Geociencias, CURE-Rocha, Rocha, Uruguay; Programa de Pós-graduação en Oceanologia, Inst. Oceanografia, Univ. Federal do Rio Grande (FURG), Rio Grande, Brazil; GONZALO PERERA, Media CURE, Udelar, Uruguay; CLAUDIA PICCINI, Lab. de Ecología Microbiana Acuática, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), MEC, Montevideo, Uruguay. |
Título : |
Rise of toxic cyanobacterial blooms is promoted by agricultural intensification in the basin of a large subtropical river of South America. |
Fecha de publicación : |
2023 |
Fuente / Imprenta : |
Global Change Biology, 2023, volume 29, issue 7, pp. 1774-1790. doi: https://doi.org/10.1111/gcb.16587 |
ISSN : |
1354-1013 |
DOI : |
10.1111/gcb.16587 |
Idioma : |
Inglés |
Notas : |
Article history: Received 6 July 2022, Accepted 27 November 2022, First published online 06 January 2023. -- Corresponde author: Kruk, C.; Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Udelar, Uruguay; email:ckruk@yahoo.com -- FUNDING: This work is part of the project ?Modelización de los efectos del cambio y la variabilidad climática en la intensificación de las floraciones de cianobacterias tóxicas en el río Uruguay y Río de la Plata? financed by Research for Climate (2021)-National Innovation and Research Agency of Uruguay (ANII) (ICC_X_2021_1_171370) and the project ?Algoritmos automatizados para la predicción espacio-temporal de calidad de agua mediada por floraciones tóxicas en sistemas de relevancia para el agua potable y la recreación? financed by Inteligencia artificial para el manejo de crisis y la construcción de resiliencia (Uruguay, Argentina: ANII, IDRC, CONICET and FAPESP). |
Contenido : |
Toxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms? main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins. Here, we performed a historical analysis of cyanobacterial abundance in a large and important ecosystem of South America (Uruguay river, ca 1900 km long, 365,000 km2 basin). We evaluated the interannual relationships between cyanobacterial abundance and land use change, river flow, urban sewage, temperature and precipitation from 1963 to the present. Our results indicated an exponential increase in cyanobacterial abundance during the last two decades, congruent with an increase in phosphorus concentration. A sharp shift in the cyanobacterial abundance rate of increase after the year 2000 was identified, resulting in abundance levels above public health alert since 2010. Path analyses showed a strong positive correlation between cyanobacteria and cropland area at the entire catchment level, while precipitation, temperature and water flow effects were negligible. Present results help to identify high nutrient input agricultural practices and nutrient enrichment as the main factors driving toxic bloom formation. These practices are already exerting severe effects on both aquatic ecosystems and human health and projections suggest these trends will be intensified in the future. To avoid further water degradation and health risk for future generations, a large-scale (transboundary) change in agricultural management towards agroecological practices will be required. © 2023 John Wiley & Sons Ltd. MenosToxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms? main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins. Here, we performed a historical analysis of cyanobacterial abundance in a large and important ecosystem of South America (Uruguay river, ca 1900 km long, 365,000 km2 basin). We evaluated the interannual relationships between cyanobacterial abundance and land use change, river flow, urban sewage, temperature and precipitation from 1963 to the present. Our results indicated an exponential increase in cyanobacterial abundance during the last two decades, congruent with an increase in phosphorus concentration. A sharp shift in the cyanobacterial abundance rate of increase after the year 2000 was identified, resulting in abundance levels above public health alert since 2010. Path analyses showed a strong positive correlation between cyanobacteria and cropland area at the entire catchment level, while precipitation, temperature and water flow effects were negligible. Present results help to identify high nutrient input agricultural practices and nutrient enrichment as the main factors driving toxic bloom formation. These practices are already exerting severe effects on both aquatic ecosy... Presentar Todo |
Palabras claves : |
Crops; Cyanobacterial blooms; Health risk; Land use; Precipitation; Temperature. |
Asunto categoría : |
P01 Conservación de la naturaleza y recursos de La tierra |
Marc : |
LEADER 03701naa a2200313 a 4500 001 1063977 005 2023-04-27 008 2023 bl uuuu u00u1 u #d 022 $a1354-1013 024 7 $a10.1111/gcb.16587$2DOI 100 1 $aKRUK, C. 245 $aRise of toxic cyanobacterial blooms is promoted by agricultural intensification in the basin of a large subtropical river of South America.$h[electronic resource] 260 $c2023 500 $aArticle history: Received 6 July 2022, Accepted 27 November 2022, First published online 06 January 2023. -- Corresponde author: Kruk, C.; Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Udelar, Uruguay; email:ckruk@yahoo.com -- FUNDING: This work is part of the project ?Modelización de los efectos del cambio y la variabilidad climática en la intensificación de las floraciones de cianobacterias tóxicas en el río Uruguay y Río de la Plata? financed by Research for Climate (2021)-National Innovation and Research Agency of Uruguay (ANII) (ICC_X_2021_1_171370) and the project ?Algoritmos automatizados para la predicción espacio-temporal de calidad de agua mediada por floraciones tóxicas en sistemas de relevancia para el agua potable y la recreación? financed by Inteligencia artificial para el manejo de crisis y la construcción de resiliencia (Uruguay, Argentina: ANII, IDRC, CONICET and FAPESP). 520 $aToxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms? main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins. Here, we performed a historical analysis of cyanobacterial abundance in a large and important ecosystem of South America (Uruguay river, ca 1900 km long, 365,000 km2 basin). We evaluated the interannual relationships between cyanobacterial abundance and land use change, river flow, urban sewage, temperature and precipitation from 1963 to the present. Our results indicated an exponential increase in cyanobacterial abundance during the last two decades, congruent with an increase in phosphorus concentration. A sharp shift in the cyanobacterial abundance rate of increase after the year 2000 was identified, resulting in abundance levels above public health alert since 2010. Path analyses showed a strong positive correlation between cyanobacteria and cropland area at the entire catchment level, while precipitation, temperature and water flow effects were negligible. Present results help to identify high nutrient input agricultural practices and nutrient enrichment as the main factors driving toxic bloom formation. These practices are already exerting severe effects on both aquatic ecosystems and human health and projections suggest these trends will be intensified in the future. To avoid further water degradation and health risk for future generations, a large-scale (transboundary) change in agricultural management towards agroecological practices will be required. © 2023 John Wiley & Sons Ltd. 653 $aCrops 653 $aCyanobacterial blooms 653 $aHealth risk 653 $aLand use 653 $aPrecipitation 653 $aTemperature 700 1 $aSEGURA, A. 700 1 $aPIÑEIRO, G. 700 1 $aBALDASSINI, P. 700 1 $aPÉREZ-BECOÑA, L. 700 1 $aGARCÍA-RODRÍGUEZ, F. 700 1 $aPERERA, G. 700 1 $aPICCINI, C. 773 $tGlobal Change Biology, 2023, volume 29, issue 7, pp. 1774-1790. doi: https://doi.org/10.1111/gcb.16587
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Treinta y Tres. Por información adicional contacte bibliott@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Treinta y Tres. |
Fecha actual : |
12/11/2019 |
Actualizado : |
16/11/2020 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
-- - -- |
Autor : |
GUIDO, A.; HOSS, D.; PILLAR, V. D. |
Afiliación : |
ANACLARA GUIDO BOLIOLI, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay. // Graduate Program in Ecology and Laboratory of Quantitative Ecology, Department of Ecology, Universidade Federal do Río Grande do Sul, Porto Alegre, Brasil.; DANIELA HOSS, Graduate Program in Ecology and Laboratory of Quantitative Ecology, Department of Ecology, Universidade Federal do Río Grande do Sul, Porto Alegre, Brasil.; VALÉRIO D. PILLAR, Graduate Program in Ecology and Laboratory of Quantitative Ecology, Department of Ecology, Universidade Federal do Río Grande do Sul, Porto Alegre, Brasil. |
Título : |
Competitive effect and responses of the invasive grass Eragrostis plana in Río de la Plata grasslands. |
Fecha de publicación : |
2019 |
Fuente / Imprenta : |
Austral Ecology, 1 December 2019, Volume 44, Issue 8, Pages 1478-1486. Doi: https://doi.org/10.1111/aec.12822 |
DOI : |
10.1111/aec.12822 |
Idioma : |
Inglés |
Notas : |
Article history: Accepted Publication August 2019. First Publication 12 Sep 2019. |
Contenido : |
Abstract
The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐occurring natives. We demonstrated E. plana had a greater negative effect on native's species performance than the native congener E. lugens. Regarding E. plana, intraspecific competition was stronger than interspecific, and its response was positive or neutral when interacting with natives, suggesting its high tolerance to grow in competition with neighbours. We conclude E. plana's negative effects on native species performance, and its positive or neutral responses to neighbouring native plants demonstrate its strong competitive ability in the recipient community. This may explain its invasion success in southern Brazil and in the encompassing Río de la Plata grasslands. MenosAbstract
The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐oc... Presentar Todo |
Palabras claves : |
CAPIM ANNONI; INTENSITY INDEX; INTERSPECIFIC COMPETITION; INTRASPECIFIC COMPETITION; INVASION; RELATIVE INTERACTION; SOUTH AFRICAN LOVEGRASS. |
Asunto categoría : |
H60 Malezas y escardas |
Marc : |
LEADER 03074naa a2200253 a 4500 001 1060413 005 2020-11-16 008 2019 bl uuuu u00u1 u #d 024 7 $a10.1111/aec.12822$2DOI 100 1 $aGUIDO, A. 245 $aCompetitive effect and responses of the invasive grass Eragrostis plana in Río de la Plata grasslands.$h[electronic resource] 260 $c2019 500 $aArticle history: Accepted Publication August 2019. First Publication 12 Sep 2019. 520 $aAbstract The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐occurring natives. We demonstrated E. plana had a greater negative effect on native's species performance than the native congener E. lugens. Regarding E. plana, intraspecific competition was stronger than interspecific, and its response was positive or neutral when interacting with natives, suggesting its high tolerance to grow in competition with neighbours. We conclude E. plana's negative effects on native species performance, and its positive or neutral responses to neighbouring native plants demonstrate its strong competitive ability in the recipient community. This may explain its invasion success in southern Brazil and in the encompassing Río de la Plata grasslands. 653 $aCAPIM ANNONI 653 $aINTENSITY INDEX 653 $aINTERSPECIFIC COMPETITION 653 $aINTRASPECIFIC COMPETITION 653 $aINVASION 653 $aRELATIVE INTERACTION 653 $aSOUTH AFRICAN LOVEGRASS 700 1 $aHOSS, D. 700 1 $aPILLAR, V. D. 773 $tAustral Ecology, 1 December 2019, Volume 44, Issue 8, Pages 1478-1486. Doi: https://doi.org/10.1111/aec.12822
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Treinta y Tres (TT) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|