|
|
Registros recuperados : 3 | |
Registros recuperados : 3 | |
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha actual : |
15/10/2014 |
Actualizado : |
15/10/2019 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
A - 1 |
Autor : |
CHEN, C.Y.; MISZTAL, I.; AGUILAR, I.; TSURUTA, S.; MEUWISSEN, T.H.E.; AGGREY, S.E.; WING, T.; MUIR, W.M. |
Afiliación : |
IGNACIO AGUILAR GARCIA, Instituto Nacional de Investigación Agropecuaria (INIA), Uruguay. |
Título : |
Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: An example using broiler chickens. |
Fecha de publicación : |
2011 |
Fuente / Imprenta : |
Journal of Animal Science, 2011, v.89, no.1, p.23-28. |
ISSN : |
0021-8812 |
DOI : |
10.2527/jas.2010-3071 |
Idioma : |
Inglés |
Notas : |
Article history: Received April 9, 2010 / Accepted September 22, 2010. |
Contenido : |
ABSTRACT.
Data of broiler chickens for 2 pure lines across 3 generations were used for genomic evaluation. A complete population (full data set; FDS) consisted of 183,784 and 164,246 broilers for the 2 lines. The genotyped subsets (SUB) consisted of 3,284 and 3,098 broilers with 57,636 SNP. Genotyped animals were preselected based on more than 20 traits with different index applied to each line. Three traits were analyzed: BW at 6 wk (BW6), ultrasound measurement of breast meat (BM), and leg score (LS) coded 1 = no and 2 = yes for leg defect. Some phenotypes were missing for BM. The training population consisted of the first 2 generations including all animals in FDS or only genotyped animals in SUB. The validation data set contained only genotyped animals in the third generation. Genetic evaluations were performed using 3 approaches: 1) phenotypic BLUP, 2) extending BLUP methodologies to utilize pedigree and genomic information in a single step (ssGBLUP), and 3) Bayes A. Whereas BLUP and ssGBLUP utilized all phenotypic data, Bayes A could use only those of the genotyped subset. Heritabilities were 0.17 to 0.20 for BW6, 0.30 to 0.35 for BM, and 0.09 to 0.11 for LS. The average accuracies of the validation population with BLUP for BW6, BM, and LS were 0.46, 0.30, and <0 with SUB and 0.51, 0.34, and 0.28 with FDS. With ssGBLUP, those accuracies were 0.60, 0.34, and 0.06 with SUB and 0.61, 0.40, and 0.37 with FDS, respectively. With Bayes A, the accuracies were 0.60, 0.36, and 0.09 with SUB. With SUB, Bayes A and ssGBLUP had similar accuracies. For traits of high heritability, the accuracy of Bayes A/SUB and ssGBLUP/FDS were similar, and up to 50% better than BLUP/FDS. However, with low heritability, ssGBLUP/ FDS was 4 to 6 times more accurate than Bayes A/SUB and 50% better than BLUP/FDS. An optimal genomic evaluation would be multi-trait and involve all traits and records on which selection is based.
©2011 American Society of Animal Science. MenosABSTRACT.
Data of broiler chickens for 2 pure lines across 3 generations were used for genomic evaluation. A complete population (full data set; FDS) consisted of 183,784 and 164,246 broilers for the 2 lines. The genotyped subsets (SUB) consisted of 3,284 and 3,098 broilers with 57,636 SNP. Genotyped animals were preselected based on more than 20 traits with different index applied to each line. Three traits were analyzed: BW at 6 wk (BW6), ultrasound measurement of breast meat (BM), and leg score (LS) coded 1 = no and 2 = yes for leg defect. Some phenotypes were missing for BM. The training population consisted of the first 2 generations including all animals in FDS or only genotyped animals in SUB. The validation data set contained only genotyped animals in the third generation. Genetic evaluations were performed using 3 approaches: 1) phenotypic BLUP, 2) extending BLUP methodologies to utilize pedigree and genomic information in a single step (ssGBLUP), and 3) Bayes A. Whereas BLUP and ssGBLUP utilized all phenotypic data, Bayes A could use only those of the genotyped subset. Heritabilities were 0.17 to 0.20 for BW6, 0.30 to 0.35 for BM, and 0.09 to 0.11 for LS. The average accuracies of the validation population with BLUP for BW6, BM, and LS were 0.46, 0.30, and <0 with SUB and 0.51, 0.34, and 0.28 with FDS. With ssGBLUP, those accuracies were 0.60, 0.34, and 0.06 with SUB and 0.61, 0.40, and 0.37 with FDS, respectively. With Bayes A, the accuracies were 0.60, 0.36, and... Presentar Todo |
Thesagro : |
MARCADORES GENÉTICOS; POLLO. |
Asunto categoría : |
L10 Genética y mejoramiento animal |
Marc : |
LEADER 02840naa a2200265 a 4500 001 1051115 005 2019-10-15 008 2011 bl uuuu u00u1 u #d 022 $a0021-8812 024 7 $a10.2527/jas.2010-3071$2DOI 100 1 $aCHEN, C.Y. 245 $aGenome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step$bAn example using broiler chickens.$h[electronic resource] 260 $c2011 500 $aArticle history: Received April 9, 2010 / Accepted September 22, 2010. 520 $aABSTRACT. Data of broiler chickens for 2 pure lines across 3 generations were used for genomic evaluation. A complete population (full data set; FDS) consisted of 183,784 and 164,246 broilers for the 2 lines. The genotyped subsets (SUB) consisted of 3,284 and 3,098 broilers with 57,636 SNP. Genotyped animals were preselected based on more than 20 traits with different index applied to each line. Three traits were analyzed: BW at 6 wk (BW6), ultrasound measurement of breast meat (BM), and leg score (LS) coded 1 = no and 2 = yes for leg defect. Some phenotypes were missing for BM. The training population consisted of the first 2 generations including all animals in FDS or only genotyped animals in SUB. The validation data set contained only genotyped animals in the third generation. Genetic evaluations were performed using 3 approaches: 1) phenotypic BLUP, 2) extending BLUP methodologies to utilize pedigree and genomic information in a single step (ssGBLUP), and 3) Bayes A. Whereas BLUP and ssGBLUP utilized all phenotypic data, Bayes A could use only those of the genotyped subset. Heritabilities were 0.17 to 0.20 for BW6, 0.30 to 0.35 for BM, and 0.09 to 0.11 for LS. The average accuracies of the validation population with BLUP for BW6, BM, and LS were 0.46, 0.30, and <0 with SUB and 0.51, 0.34, and 0.28 with FDS. With ssGBLUP, those accuracies were 0.60, 0.34, and 0.06 with SUB and 0.61, 0.40, and 0.37 with FDS, respectively. With Bayes A, the accuracies were 0.60, 0.36, and 0.09 with SUB. With SUB, Bayes A and ssGBLUP had similar accuracies. For traits of high heritability, the accuracy of Bayes A/SUB and ssGBLUP/FDS were similar, and up to 50% better than BLUP/FDS. However, with low heritability, ssGBLUP/ FDS was 4 to 6 times more accurate than Bayes A/SUB and 50% better than BLUP/FDS. An optimal genomic evaluation would be multi-trait and involve all traits and records on which selection is based. ©2011 American Society of Animal Science. 650 $aMARCADORES GENÉTICOS 650 $aPOLLO 700 1 $aMISZTAL, I. 700 1 $aAGUILAR, I. 700 1 $aTSURUTA, S. 700 1 $aMEUWISSEN, T.H.E. 700 1 $aAGGREY, S.E. 700 1 $aWING, T. 700 1 $aMUIR, W.M. 773 $tJournal of Animal Science, 2011$gv.89, no.1, p.23-28.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|