|
|
 | Acceso al texto completo restringido a Biblioteca INIA Treinta y Tres. Por información adicional contacte bibliott@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Treinta y Tres. |
Fecha : |
28/03/2016 |
Actualizado : |
24/09/2018 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
BASSU, S.; BRISSON, N.; DURAND, J.L.; BOOTE, K.; LIZASO, J.; JONES, J.W.; ROSENZWEIG, C.; RUANE, A.C.; ADAM, M.; BARON, C.; BASSO, B.; BIERNATH, C.; BOOGAARD, H.; CONIJN, S.; CORBEELS, M.L; DERYNG, D.; SANTIS, G. DE; GAYLER, S.; GRASSINI, P.; HATFIELD, J.; HOEK, S.; IZAURRALDE, C.; JONGSCHAAP, R.; KEMANIAN, A.R.; KERSEBAUM, C.KIM, S-H.; KUMAR, N.; MAKOWSKI, D.; MÜLLER, C.; NENDEL, C.; PRIESACK, E.; PRAVIA, V.; SAU, F.; SHCHERBAK, I.; TAO, F.; TEXEIRA, E.; TIMLIN, D.; WAHA, K. |
Afiliación : |
MARIA VIRGINIA PRAVIA NIN, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; Department of Plant Science, The Pennsylvania State University, USA. |
Título : |
How do various maize crop models vary in their responses to climate change factors? |
Fecha de publicación : |
2014 |
Fuente / Imprenta : |
Global Change Biology, 2014, v.20(7), p. 2301-2320. |
DOI : |
10.1111/gcb.12520 |
Idioma : |
Inglés |
Notas : |
Article history: Received 7 June 2013 and accepted 2 December 2013, published 2014. |
Contenido : |
Abstract:
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania).
While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data forcalibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha1 per °C. Doubling [CO2] from 360 to 720 lmol mol1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. MenosAbstract:
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania).
While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data forcalibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha1 per °C. Doubling [CO2] from 360 to 720 lmol mol1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2]... Presentar Todo |
Palabras claves : |
AGMIP; CARBON DIOXIDE; CLIMATE; CO2; GRAIN YIELD; MAIZE; MODEL INTERCOMPARISON; MODELIZACIÓN DE CULTIVOS; SIMULATION MODELS; TEMPERATURE. |
Thesagro : |
CLIMA; DIOXIDO DE CARBONO; INCERTIDUMBRE; MAÍZ; MODELOS DE SIMULACIÓN; TEMPERATURA. |
Asunto categoría : |
U10 Métodos matemáticos y estadísticos |
Marc : |
LEADER 03684naa a2200769 a 4500 001 1054517 005 2018-09-24 008 2014 bl uuuu u00u1 u #d 024 7 $a10.1111/gcb.12520$2DOI 100 1 $aBASSU, S. 245 $aHow do various maize crop models vary in their responses to climate change factors?$h[electronic resource] 260 $c2014 500 $aArticle history: Received 7 June 2013 and accepted 2 December 2013, published 2014. 520 $aAbstract: Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data forcalibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha1 per °C. Doubling [CO2] from 360 to 720 lmol mol1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. 650 $aCLIMA 650 $aDIOXIDO DE CARBONO 650 $aINCERTIDUMBRE 650 $aMAÍZ 650 $aMODELOS DE SIMULACIÓN 650 $aTEMPERATURA 653 $aAGMIP 653 $aCARBON DIOXIDE 653 $aCLIMATE 653 $aCO2 653 $aGRAIN YIELD 653 $aMAIZE 653 $aMODEL INTERCOMPARISON 653 $aMODELIZACIÓN DE CULTIVOS 653 $aSIMULATION MODELS 653 $aTEMPERATURE 700 1 $aBRISSON, N. 700 1 $aDURAND, J.L. 700 1 $aBOOTE, K. 700 1 $aLIZASO, J. 700 1 $aJONES, J.W. 700 1 $aROSENZWEIG, C. 700 1 $aRUANE, A.C. 700 1 $aADAM, M. 700 1 $aBARON, C. 700 1 $aBASSO, B. 700 1 $aBIERNATH, C. 700 1 $aBOOGAARD, H. 700 1 $aCONIJN, S. 700 1 $aCORBEELS, M.L 700 1 $aDERYNG, D. 700 1 $aSANTIS, G. DE 700 1 $aGAYLER, S. 700 1 $aGRASSINI, P. 700 1 $aHATFIELD, J. 700 1 $aHOEK, S. 700 1 $aIZAURRALDE, C. 700 1 $aJONGSCHAAP, R. 700 1 $aKEMANIAN, A.R. 700 1 $aKERSEBAUM, C.KIM, S-H. 700 1 $aKUMAR, N. 700 1 $aMAKOWSKI, D. 700 1 $aMÜLLER, C. 700 1 $aNENDEL, C. 700 1 $aPRIESACK, E. 700 1 $aPRAVIA, V. 700 1 $aSAU, F. 700 1 $aSHCHERBAK, I. 700 1 $aTAO, F. 700 1 $aTEXEIRA, E. 700 1 $aTIMLIN, D. 700 1 $aWAHA, K. 773 $tGlobal Change Biology, 2014$gv.20(7), p. 2301-2320.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Treinta y Tres (TT) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha actual : |
18/01/2022 |
Actualizado : |
18/01/2022 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Circulación / Nivel : |
Internacional - -- |
Autor : |
SESSA, L.; PEDRINI, N.; ALTIER, N.; ABREO, E. |
Afiliación : |
LUCÍA OLGA SESSA JUSID, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay.; NICOLÁS PEDRINI, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina; NORA ADRIANA ALTIER MANZINI, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; EDUARDO RAUL ABREO GIMENEZ, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay. |
Título : |
Alkane-priming of Beauveria bassiana strains to improve biocontrol of the redbanded stink bug Piezodorus guildinii and the bronze bug Thaumastocoris peregrinus. |
Fecha de publicación : |
2022 |
Fuente / Imprenta : |
Journal of Invertebrate Pathology, 2022, Volume 187, Article number 107700. doi: https://doi.org/10.1016/j.jip.2021.107700 |
ISSN : |
0022-2011 |
DOI : |
10.1016/j.jip.2021.107700 |
Idioma : |
Inglés |
Notas : |
Article history: Received 12 August 2021; Revised 1 November 2021; Accepted 22 November 2021; Available online 26 November 2021.
This work was financed by Agencia Nacional de Investigación e Innovación (ANII, Uruguay) grant POS_NAC_2016_1_130245 and Instituto Nacional de Investigación Agropecuaria (INIA, Uruguay) Projects SA24 and SA47. Assistance of Mabel Pessio from INIA Estanzuela and Sofia Simeto from INIA Tacuarembó is acknowledged.
Corresponding author: Sessa, L.; Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, Estación Experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay; email:lsessa@inia.org.uy |
Contenido : |
ABSTRACT. - Insect epicuticle hydrocarbons (CHC) are known to be important determinants in the susceptibility degree of insects to fungal entomopathogens. Five Beauveria bassiana (Balsamo) Vuillemin (Hypocreales; Clavicipitaceae) strains were phenotypically analyzed regarding their response to CHC nutrition and their pathogenicity and virulence towards high fungal-susceptible Thaumastocoris peregrinus (Carpintero and Dellapé) (Heteroptera: Thaumastocoridae) and low fungal-susceptible Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), which are important hemipteran pests in eucalyptus and soybean plantations, respectively. Two of these strains, which were the most (ILB308) and the least (ILB299) virulent to P. guildinii, were also evaluated at gene expression level after growth on n-pentadecane, a P. guildinii epicuticular hydrocarbon. Beauveria bassiana hypervirulent strain ILB308 showed the lowest growth on most evaluated CHC media. However, this strain distinctively induced most of the analyzed genes involved in CHC assimilation, cuticle degradation and stress tolerance. Virulence towards low susceptibility P. guildinii was enhanced in both hypervirulent ILB308 and hypovirulent ILB299 strains after growth on n-pentadecane as the sole carbon source, whereas virulence enhancement towards high susceptibility T. peregrinus was only observed in the hypervirulent strain. Virulence enhancement towards P. guildinii could be mostly explained by a priming effect produced by CHC on the induction of some genes related to hydrocarbon assimilation in ILB299 and ILB308, such as cytochrome P450 genes (BbCyp52g11 and BbCyp52x1), together with adhesion and stress tolerance genes, such as hydrophobin (Bbhyd2) and catalase (Bbcatc) and glutathione peroxidase (Bbgpx), respectively.
© 2021 MenosABSTRACT. - Insect epicuticle hydrocarbons (CHC) are known to be important determinants in the susceptibility degree of insects to fungal entomopathogens. Five Beauveria bassiana (Balsamo) Vuillemin (Hypocreales; Clavicipitaceae) strains were phenotypically analyzed regarding their response to CHC nutrition and their pathogenicity and virulence towards high fungal-susceptible Thaumastocoris peregrinus (Carpintero and Dellapé) (Heteroptera: Thaumastocoridae) and low fungal-susceptible Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), which are important hemipteran pests in eucalyptus and soybean plantations, respectively. Two of these strains, which were the most (ILB308) and the least (ILB299) virulent to P. guildinii, were also evaluated at gene expression level after growth on n-pentadecane, a P. guildinii epicuticular hydrocarbon. Beauveria bassiana hypervirulent strain ILB308 showed the lowest growth on most evaluated CHC media. However, this strain distinctively induced most of the analyzed genes involved in CHC assimilation, cuticle degradation and stress tolerance. Virulence towards low susceptibility P. guildinii was enhanced in both hypervirulent ILB308 and hypovirulent ILB299 strains after growth on n-pentadecane as the sole carbon source, whereas virulence enhancement towards high susceptibility T. peregrinus was only observed in the hypervirulent strain. Virulence enhancement towards P. guildinii could be mostly explained by a priming effect produced by ... Presentar Todo |
Palabras claves : |
Bug; Entomopathogen; Eucalyptus; N-pentadecane; PLATAFORMA DE BIOINSUMOS; Soybean; Virulence. |
Asunto categoría : |
K01 Ciencias forestales - Aspectos generales |
Marc : |
LEADER 03402naa a2200277 a 4500 001 1062644 005 2022-01-18 008 2022 bl uuuu u00u1 u #d 022 $a0022-2011 024 7 $a10.1016/j.jip.2021.107700$2DOI 100 1 $aSESSA, L. 245 $aAlkane-priming of Beauveria bassiana strains to improve biocontrol of the redbanded stink bug Piezodorus guildinii and the bronze bug Thaumastocoris peregrinus.$h[electronic resource] 260 $c2022 500 $aArticle history: Received 12 August 2021; Revised 1 November 2021; Accepted 22 November 2021; Available online 26 November 2021. This work was financed by Agencia Nacional de Investigación e Innovación (ANII, Uruguay) grant POS_NAC_2016_1_130245 and Instituto Nacional de Investigación Agropecuaria (INIA, Uruguay) Projects SA24 and SA47. Assistance of Mabel Pessio from INIA Estanzuela and Sofia Simeto from INIA Tacuarembó is acknowledged. Corresponding author: Sessa, L.; Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, Estación Experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay; email:lsessa@inia.org.uy 520 $aABSTRACT. - Insect epicuticle hydrocarbons (CHC) are known to be important determinants in the susceptibility degree of insects to fungal entomopathogens. Five Beauveria bassiana (Balsamo) Vuillemin (Hypocreales; Clavicipitaceae) strains were phenotypically analyzed regarding their response to CHC nutrition and their pathogenicity and virulence towards high fungal-susceptible Thaumastocoris peregrinus (Carpintero and Dellapé) (Heteroptera: Thaumastocoridae) and low fungal-susceptible Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), which are important hemipteran pests in eucalyptus and soybean plantations, respectively. Two of these strains, which were the most (ILB308) and the least (ILB299) virulent to P. guildinii, were also evaluated at gene expression level after growth on n-pentadecane, a P. guildinii epicuticular hydrocarbon. Beauveria bassiana hypervirulent strain ILB308 showed the lowest growth on most evaluated CHC media. However, this strain distinctively induced most of the analyzed genes involved in CHC assimilation, cuticle degradation and stress tolerance. Virulence towards low susceptibility P. guildinii was enhanced in both hypervirulent ILB308 and hypovirulent ILB299 strains after growth on n-pentadecane as the sole carbon source, whereas virulence enhancement towards high susceptibility T. peregrinus was only observed in the hypervirulent strain. Virulence enhancement towards P. guildinii could be mostly explained by a priming effect produced by CHC on the induction of some genes related to hydrocarbon assimilation in ILB299 and ILB308, such as cytochrome P450 genes (BbCyp52g11 and BbCyp52x1), together with adhesion and stress tolerance genes, such as hydrophobin (Bbhyd2) and catalase (Bbcatc) and glutathione peroxidase (Bbgpx), respectively. © 2021 653 $aBug 653 $aEntomopathogen 653 $aEucalyptus 653 $aN-pentadecane 653 $aPLATAFORMA DE BIOINSUMOS 653 $aSoybean 653 $aVirulence 700 1 $aPEDRINI, N. 700 1 $aALTIER, N. 700 1 $aABREO, E. 773 $tJournal of Invertebrate Pathology, 2022, Volume 187, Article number 107700. doi: https://doi.org/10.1016/j.jip.2021.107700
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
Expresión de búsqueda válido. Check! |
|
|