|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha : |
18/08/2022 |
Actualizado : |
27/04/2023 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
PARUELO, J.; SIERRA, M. |
Afiliación : |
JOSÉ PARUELO, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; IFEVA-Fac. Agronomía, CONICET-UBA, Bs.As., Argentina; IECA, Fac. Ciencias, UdelaR, Montevideo, Uruguay; MIGUEL OSCAR SIERRA PEREIRO, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay. |
Título : |
Sustainable intensification and ecosystem services: how to connect them in agricultural systems of southern South America. |
Fecha de publicación : |
2023 |
Fuente / Imprenta : |
Journal of Environmental Studies and Sciences, 2023, volume 13, issue 1, pp. 198-206. doi: https://doi.org/10.1007/s13412-022-00791-9 |
ISSN : |
2190-6483 (print); 2190-6491 (electronic) |
DOI : |
10.1007/s13412-022-00791-9 |
Idioma : |
Inglés |
Notas : |
Article history: Accepted 01 August 2022; Published 18 August 2022. Corresponding author: José M. Paruelo, Instituto Nacional de Investigación Agropecuaria, INIA,
Colonia, Uruguay, e-mail: jparuelo@inia.org.uy -- |
Contenido : |
ABSTRACT.- Sustainable intensification (SI) has become a central issue in both academic and political-institutional debates. Questions mostly center on the term's conceptual scope. In this article, we outline an operational definition of SI based on (1) a more explicit characterization of the intensification process that describes the intensity/magnitude of the management interventions generating stress or disturbances in the system, (2) a description of the relative change in sustainability based on quantifying ecosystem services supply changes among alternative uses, and 3) the definition of "impact functions" of a given management intervention as the relationships between the level of supply of given ES (or a "bundle" of ES) and an indicator of the intensification process. © 2022 Springer Nature, AESS. |
Palabras claves : |
Agro-ecological intensification; Decision making; Land use changes; Land use planning; Sustainability. |
Asunto categoría : |
A50 Investigación agraria |
Marc : |
LEADER 01859naa a2200229 a 4500 001 1063534 005 2023-04-27 008 2023 bl uuuu u00u1 u #d 022 $a2190-6483 (print); 2190-6491 (electronic) 024 7 $a10.1007/s13412-022-00791-9$2DOI 100 1 $aPARUELO, J. 245 $aSustainable intensification and ecosystem services$bhow to connect them in agricultural systems of southern South America.$h[electronic resource] 260 $c2023 500 $aArticle history: Accepted 01 August 2022; Published 18 August 2022. Corresponding author: José M. Paruelo, Instituto Nacional de Investigación Agropecuaria, INIA, Colonia, Uruguay, e-mail: jparuelo@inia.org.uy -- 520 $aABSTRACT.- Sustainable intensification (SI) has become a central issue in both academic and political-institutional debates. Questions mostly center on the term's conceptual scope. In this article, we outline an operational definition of SI based on (1) a more explicit characterization of the intensification process that describes the intensity/magnitude of the management interventions generating stress or disturbances in the system, (2) a description of the relative change in sustainability based on quantifying ecosystem services supply changes among alternative uses, and 3) the definition of "impact functions" of a given management intervention as the relationships between the level of supply of given ES (or a "bundle" of ES) and an indicator of the intensification process. © 2022 Springer Nature, AESS. 653 $aAgro-ecological intensification 653 $aDecision making 653 $aLand use changes 653 $aLand use planning 653 $aSustainability 700 1 $aSIERRA, M. 773 $tJournal of Environmental Studies and Sciences, 2023, volume 13, issue 1, pp. 198-206. doi: https://doi.org/10.1007/s13412-022-00791-9
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
 | Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Las Brujas. |
Fecha actual : |
08/06/2022 |
Actualizado : |
08/06/2022 |
Tipo de producción científica : |
Capítulo en Libro Técnico-Científico |
Autor : |
CAL, A.; PRECIOZZI, J.; MUSÉ, PABLO |
Afiliación : |
ADRIAN TABARE CAL ALVAREZ, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; JAVIER PRECIOZZI, IIE, Facultad de Ingeniería, Universidad de la Republica, Uruguay; Digital Sense, Uruguay; PABLO MUSÉ, IIE, Facultad de Ingeniería, Universidad de la Republica, Uruguay. |
Título : |
Automatic Classification of Agricultural Summer Crops in Uruguay. [Conference paper] |
Complemento del título : |
IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021, Brussels (Belgium) 12-16 July 2021. Code 176845. |
Fecha de publicación : |
2021 |
Fuente / Imprenta : |
International Geoscience and Remote Sensing Symposium (IGARSS), 2021, pages 6520 - 6523. doi: http://doi.org/10.1109/IGARSS47720.2021.9555035 |
DOI : |
10.1109/IGARSS47720.2021.9555035 |
Idioma : |
Inglés |
Notas : |
Publisher: Institute of Electrical and Electronics Engineers Inc. -- Sponsors: The Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing Society (GRSS). |
Contenido : |
ABSTRACT - In this work, we present a study for the classification of summer crops on a nationwide perspective. Using both optical and radar satellite images, we implement a time-series classification algorithm using XGBoost. Two datasets with farm-level information were used: one with ground truth obtained directly from farmers' production and the other with declared crops obtained at the government level. The crops analyzed were corn, soybean, sorghum, and pastures. When trained and validated with ground truth, the classifier yields a F1-Score performance of 99% for soybean, and values higher than 80% for corn and sorghum. Predictions performed with this model on the dataset of declared crops lead to F1-Score values of 54, 97, and 50%, for corn, soybean, and sorghum, respectively. These low values for corn and sorghum indicate the presence of mislabeled data in that dataset, which in turns may suggest issues with the declarations provided by the farmers. ©2021 IEEE. |
Palabras claves : |
Data fusion; K-means; Laser radar; Radar imaging; Satellites; Soil preservation; Sustainable agriculture; XGBoost. |
Asunto categoría : |
A50 Investigación agraria |
Marc : |
LEADER 01977nam a2200253 a 4500 001 1063252 005 2022-06-08 008 2021 bl uuuu u01u1 u #d 024 7 $a10.1109/IGARSS47720.2021.9555035$2DOI 100 1 $aCAL, A. 245 $aAutomatic Classification of Agricultural Summer Crops in Uruguay. [Conference paper]$h[electronic resource] 260 $aInternational Geoscience and Remote Sensing Symposium (IGARSS), 2021, pages 6520 - 6523. doi: http://doi.org/10.1109/IGARSS47720.2021.9555035$c2021 500 $aPublisher: Institute of Electrical and Electronics Engineers Inc. -- Sponsors: The Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing Society (GRSS). 520 $aABSTRACT - In this work, we present a study for the classification of summer crops on a nationwide perspective. Using both optical and radar satellite images, we implement a time-series classification algorithm using XGBoost. Two datasets with farm-level information were used: one with ground truth obtained directly from farmers' production and the other with declared crops obtained at the government level. The crops analyzed were corn, soybean, sorghum, and pastures. When trained and validated with ground truth, the classifier yields a F1-Score performance of 99% for soybean, and values higher than 80% for corn and sorghum. Predictions performed with this model on the dataset of declared crops lead to F1-Score values of 54, 97, and 50%, for corn, soybean, and sorghum, respectively. These low values for corn and sorghum indicate the presence of mislabeled data in that dataset, which in turns may suggest issues with the declarations provided by the farmers. ©2021 IEEE. 653 $aData fusion 653 $aK-means 653 $aLaser radar 653 $aRadar imaging 653 $aSatellites 653 $aSoil preservation 653 $aSustainable agriculture 653 $aXGBoost 700 1 $aPRECIOZZI, J. 700 1 $aMUSÉ, PABLO
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Las Brujas (LB) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
No hay resultados para la expresión de búsqueda informada registros. |
|
|