Ainfo Consulta

Catálogo de Información Agropecuaria

Bibliotecas INIA

 

Botón Actualizar


Botón Actualizar

Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy.
Registro completo
Biblioteca (s) :  INIA Las Brujas.
Fecha :  18/04/2023
Actualizado :  18/04/2023
Tipo de producción científica :  Artículos en Revistas Indexadas Internacionales
Autor :  MOSCIARO, M.J.; SEGHEZZO, L.; TEXEIRA, M.; PARUELO, J.; VOLANTE, J.
Afiliación :  MARÍA JESÚS MOSCIARO, Estación Experimental Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 68 km 172 (A4403AGE), Cerrillos, Salta, Argentina; LUCAS SEGHEZZO, Instituto de Investigaciones en Energía No Convencional (INENCO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, Argentina; MARCOS TEXEIRA, Laboratorio de Análisis Regional y Teledetección. IFEVA, Depto. Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, UBA and CONICET, Av. San Martín 4453, Buenos Aires, 1417, Argentina; JOSÉ PARUELO, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; Dpto. Métodos Cuantitativos y Sistemas de Información, Fac. Agronomía, LART IFEVA, Univ. Bs.As., CONICET, Bs.As. Argentina; Fac. Ciencias, IECA, Univ. de la República, Montevideo, Uruguay.; JOSÉ VOLANTE, Estación Experimental Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 68 km 172 (A4403AGE), Cerrillos, Salta, Argentina.
Título :  Where did the forest go? Post-deforestation land use dynamics in the Dry Chaco region in Northwestern Argentina.
Fecha de publicación :  2023
Fuente / Imprenta :  Land Use Policy, June 2023, Volume 129, article 106650. doi: https://doi.org/10.1016/j.landusepol.2023.106650
ISSN :  0264-8377
DOI :  10.1016/j.landusepol.2023.106650
Idioma :  Inglés
Notas :  Article history: Received 21 December 2021; Received in revised form 27 January 2023; Accepted 20 March 2023; Available online 23 March 2023. -- Correspondence author: Mosciaro, M.J.; Estación Experimental Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 68 km 172 (A4403AGE), Cerrillos, Salta, Argentina; email:mosciaro.maria@inta.gob.ar --
Contenido :  Land transformation is a major component of global change, directly altering habitat composition and spatial configuration, biodiversity, and ecosystem functioning. Over the last decades, the Dry Chaco region in Northwestern Argentina has become one of the regions most heavily transformed worldwide due to the expansion of its agricultural frontier. Many questions remain unanswered about how this process of change occurred. In this study, a parcel-scale database was used to assess the conversion of natural landscapes to different agroecosystems. The magnitude and direction of land use transitions during the last 20 years (2001-2019) were analyzed. Ranching is the main proximate cause of deforestation, accounting for more than 63% of the area cleared annually, though the land use expansion pattern has varied in space and time. Trajectories of land use transitions revealed a spatial arrangement where croplands have displaced ranching to drier areas. The analysis of the intensity of these transitions has shown that the trajectory of post-deforestation land use dynamics has followed a permanent systematic spatio-temporal pattern of change: (1) Dry Forest to Pastures; (2) Pastures to Single Crops; and (3) Single Cropping and Double Cropping systems, where processes of expansion, replacement, and intensification have been identified. Information on transition patterns has allowed us to develop a deeper understanding of land transformation processes, essential in the design of effec... Presentar Todo
Palabras claves :  Dry Chaco; Land use change; Land use trajectories; Natural landscapes; Patterns of change; Proximate causes of deforestation.
Asunto categoría :  P01 Conservación de la naturaleza y recursos de La tierra
Marc :  Presentar Marc Completo
Registro original :  INIA Las Brujas (LB)
Biblioteca Identificación Origen Tipo / Formato Clasificación Cutter Registro Volumen Estado
LB103385 - 1PXIAP - DDLand Use Policy/2023

Volver


Botón Actualizar


Botón Actualizar

Acceso al texto completo restringido a Biblioteca INIA Las Brujas. Por información adicional contacte bibliolb@inia.org.uy.
Registro completo
Biblioteca (s) :  INIA Las Brujas.
Fecha actual :  23/02/2024
Actualizado :  23/02/2024
Tipo de producción científica :  Artículos en Revistas Indexadas Internacionales
Circulación / Nivel :  Internacional - --
Autor :  PARUELO, J.; TEXEIRA, M.; TOMASEL, F.
Afiliación :  JOSÉ PARUELO, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina; IECA, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; MARCOS TEXEIRA, IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina; FERNANDO TOMASEL, Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States.
Título :  Hybrid modeling for grassland productivity prediction: A parametric and machine learning technique for grazing management with applicability to digital twin decision systems.
Fecha de publicación :  2024
Fuente / Imprenta :  Agricultural Systems. 2024. Volume 214, article 103847. https://doi.org/10.1016/j.agsy.2023.103847
ISSN :  0308-521X
DOI :  10.1016/j.agsy.2023.103847
Idioma :  Inglés
Notas :  Article history: Received 1 August 2023; Received in revised form 5 December 2023; Accepted 18 December 2023; Available online 28 December 2023. -- Correspondence: Paruelo, J.M.; Instituto Nacional de Investigación Agropecuaria, INIA, La Estanzuela, Ruta 50 km 11, Colonia, Uruguay; email:jparuelo@inia.org.uy -- Funding: This work was supported by grants from ANII (Uruguay. FSDA_1_2018_1_154773 and IA_2021_1_04 and IA_2021_1_1010784), CSIC-Universidad de la República - Uruguay (Programa I + D Grupos 2018-433), Universidad de Buenos Aires (Argentina) and CONICET (2021-2024. PIP-2021. 11220200100956CO01). -- Supplementary data: https://doi.org/10.1016/j.agsy.2023.103847 --
Contenido :  ABSTRACT.- CONTEXT: Monitoring Aboveground Net Primary Production (ANPP) is critical to assess not only the current ecosystem status but also its long-term dynamics. In rangelands, the seasonal dynamics of ANPP determines forage availability, stock density, and livestock productivity. OBJECTIVE: To develop a hybrid model to be used as a prediction engine for ANPP in the native grasslands of Uruguay. The model combines a parametric component based on the seasonal dynamics of ANPP, and an artificial neural network (ANN) component used to model the remaining non-linearities, which are mainly related to precipitation and temperature variability. The output of hybrid model is proposed as the "virtual entity" of a digital twin support decision system where the "physical entity" is characterized by a collection of bi-weekly (fortnight) ANPP estimates. METHODS: Fortnight ANPP data were calculated from MODIS EVI for the 2001-2020 period. A sigmoidal functional response, having three parameters with an explicit biological interpretation, was fitted to the accumulated ANPP as a function of time. Forecasts were generated by extrapolating the sigmoidal functional response fit up to four fortnights ahead. From these fits, we obtained the fortnight ANPP values by differentiating the accumulated fortnight ANPP. Predictions (up to four fortnights) were generated for each fortnight and year. The residuals from these fits were modeled using a multilayer perceptron trained by backpropagation us... Presentar Todo
Palabras claves :  Agroecological transitions; ANPP; Artificial neural networks; Grasslands; Remote sensing; Uruguay.
Asunto categoría :  --
Marc :  Presentar Marc Completo
Registro original :  INIA Las Brujas (LB)
Biblioteca Identificación Origen Tipo / Formato Clasificación Cutter Registro Volumen Estado
LB103818 - 1PXIAP - DDAgricultural Systems/2024
Volver
Expresión de búsqueda válido. Check!
 
 

Embrapa
Todos los derechos reservados, conforme Ley n° 9.610
Política de Privacidad
Área Restricta

Instituto Nacional de Investigación Agropecuaria
Andes 1365 - piso 12 CP 11100 Montevideo, Uruguay
Tel: +598 2902 0550 Fax: +598 2902 3666
bibliotecas@inia.org.uy

Valid HTML 4.01 Transitional