

Rice Productivity and Stability in a Long-Term Rotations Experiment in Temperate S. America

Aguirre, M.; Macedo, I.; Roel, A.; González, P.; Bonilla, C.; <u>Terra, J.A.</u>

DE INVESTIGACIÓN E INNOVACIÓN

International Temperate Rice Conference New Orleans, Louisiana. June 5-8, 2024

Rice Yield Potential and Gaps in Uruguay

Integrated Rice-Livestock Systems (IRLS): Key of Uruguayan Rice Production Systems Sustainability.

IRLS allows sustained **yields** increases with relatively high **ecoefficiency**, optimizing **economic** results, diversifying incomes and reducing risk, preserving **natural resources**, promoting **biodiversity** and minimizing the **environmental footprint**.

Pittelkow et al. 2016, Glob. Food Sec.; Tseng et al., 2020, Sci. Rep. Macedo et al., 2021, J. Clean. Prod.; Castillo et al., 2021, Glob. Food Sec.; Tseng et al., 2021. Curr. Res. Environ. Sustain; Pereira-Mora et al., 2022. Appl. Soil Ecol. Macedo et al., 2022, Agric. Syst. Castillo et al., 2023. Front. Sustain. Food Syst. Martinez, 2023, Plant Dis.

Ex: Rice-Soybeans-Livestock Integrated Farm (Guerrina Farm: 19/03/2024)

Harvested Rice

Furrow irrigated Soybeans

Sumer tillage & leveling of a pasture for next spring rice.

Perennial pasture and livestock grazing

The Long-Term Rice Rotation Systems Experiment

Year: 2012; 33°16'21.47"S; 54°10'23.17"W. 22m OSL

Goal: Evaluate the productivity, economics, ecoefficiency & environmental footprint of contrasting rice rotation intensification scenarios.

 Assess rotation systems effects on rice productivity, yield stability and the probabilities of high and low yields during 9 growing seasons.

RICE CONFERENC

Rotations contrasted in the Long-Term Experiment (LTE:2012)

		1		2	1	3		4		5		6	
		Spr-Sum	Fall-Win	Spr-Sum	Fall-Win	Spr-Sum	Fall-Win	Spr-Sum	Fall-Win	Spr-Sum	Fall-Win	Spr-Sum	Fall-Win
ent	Rice-Long Pasture	RICE	Ryegrass	RICE	Tall Fescue-White Clover-Birdsfoot trefoil								
ו gradi													
ication													
Itensif													
<u> </u>													
ł													
	te i bassiere en	TT	driza										
				atter a	-1402						- 1 - 1		
									1				

Rice Yield by Rotation, Phase, & Previous Crop

(LTE: 9 yrs.; n: 243, mean yield: 10.6 Mg/ha)

- Rice yield in Soy rotations was 8% higher than with only pastures (R-LP & R-SP: 10.2 Mg.ha⁻¹) & 15% than Cont. Rice (9.6 Mg.ha⁻¹).
- No yield differences among rotations with Soy (R-Sy, R-Sy-LP, R-Crops), nor between only pastures were found.

Rice Yield by Previous Crop

RICE CONFERENCE

(LTE: 9 yrs.; n: 243, mean yield: 10.6 Mg/ha)

Grouping by predecessor, the highest yield was after Soy (11.3 Mg ha⁻¹), followed by long pastures (10.6 Mg ha⁻¹); & the lowest after rice (9.5 Mg ha⁻¹)

Rice Yield Stability by Previous Crop.

(LTE: 9 yrs.; n: 243, mean yield 10.6 Mg/ha)

Rice Yield Stability by Previous crop in contrasting years.

 Low potential yrs.: rice yield after pastures (9.5 Mg ha⁻¹) or Soybeans (10 Mg ha⁻¹) was similar, but both, higher than rice on rice (8.8 Mg ha⁻¹).

RICE CONFEREN

Was N related with yield differences among rotations/predecessors? (3 yrs. of the highest yield potential)

Rice yield by N rate and Rotation

Fabini et al., in preparation

Final Remarks

- Previous crop affected rice yield, even more than rotation.
- Soybean as previous crop had positive impacts on rice yield in all rotations and years.
- The greatest effects of soybeans and/or perennial pastures on rice productivity were observed in high yield potential environments.
- Rice yield after rice was less productive and more stable than other rotations/predecessors.
- Info contributes for the re-design of future intensive rice-pasture systems and the analysis of their sustainability.

ACKNOWLEDGEMENTS: ITRC organizers.

Thanks, • José A. Terra; jterra@inia.org.uy

A. M. M. M. Prove I V

