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Abstract 
Plant breeding programs know the advantages of high-throughput phenotyping (HTP) in 

increasing efficiency over classical phenotyping and screening methods, which is achieved 

by saving time and improving selection accuracy. Even so, most programs have not yet 

systematically implemented this technology into their breeding pipelines. This review aims 

to indicate the restrictions of implementing HTP at a large scale and to summarize studies 

according to the used devices, data classes collected, and artificial intelligence (AI) meth-

ods applied to predict and classify agronomic traits in plant breeding programs with a focus 

on soybean [Glycine max (L.) Merr.]. Excluding HTP platforms in laboratories and green-

houses, satellite remote sensing, and autonomous mobile robots, this review focuses on 

field-based HTP platforms that take aerial images from drones and apply AI methods to 

associate those images with the traits of interest. Field-based HTP research is also con-

ducted using hand-held devices that record individual vegetation indices (e.g., NDVI), a few 

spectral bands (multispectral radiometers), or the continuous range of the electromagnetic 

light spectrum (spectroradiometers). However, plant breeders must evaluate thousands of 

experimental lines each year, so using these devices instead of drones implies a trade-off 

between acquisition accuracy and the time it takes to collect the data. A challenge in the 

coming years is fine-tuning scalable, reliable models and optimizing data input, processing, 

and output pipelines to provide breeders with helpful information before they make selec-

tions. 
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Fenotipado de alto rendimiento usando imágenes aéreas para predecir 
rasgos agronómicos en programas de mejoramiento de soja 

Resumen 

Los programas de fitomejoramiento conocen las ventajas del fenotipado de alto rendimiento (FAR) para incrementar la 

eficiencia de los métodos de fenotipado clásico y cribado, lo cual se logra ahorrando tiempo y mejorando la precisión de 

selección. Aun así, la mayoría de los programas todavía no han implementado sistemáticamente esta tecnología en sus 

líneas de mejoramiento. Esta revisión tiene por objetivo indicar restricciones de implementar FAR a gran escala y resumir 

estudios según dispositivos usados, clases de datos recolectados y métodos de inteligencia artificial (IA) aplicados para 

predecir y clasificar caracteres agronómicos en programas de mejoramiento vegetal con foco en soja [Glycine max (L.) 

Merr.]. Excluyendo plataformas FAR en laboratorios e invernáculos, sensoramiento remoto satelital y robots móviles au-

tónomos, esta revisión se enfoca en plataformas FAR a nivel de campo que toman imágenes aéreas desde drones y 
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aplican métodos de IA para asociar esas imágenes con caracteres de interés. Investigaciones en FAR a nivel de campo 

también se realizan con dispositivos portátiles que registran índices de vegetación individuales (por ejemplo, NDVI), unas 

pocas bandas espectrales (radiómetros multiespectrales) o el rango continuo del espectro electromagnético de la luz 

(espectrorradiómetros). Sin embargo, los fitomejoradores deben evaluar miles de líneas experimentales cada año, por lo 

que usar estos dispositivos en vez de drones implica un compromiso entre precisión de adquisición y el tiempo que lleva 

colectar los datos. Un desafío en los próximos años es ajustar modelos escalables y confiables y optimizar canales de 

entrada, procesamiento y salida de datos para proveer información útil a los mejoradores antes de realizar las selecciones.  

Palabras clave: agricultura digital, aprendizaje automático, fenómica, sensoramiento remoto, soja 

 

Fenotipagem de alto rendimento usando imagens aéreas para prever 
características agronômicas em programas de melhoramento de soja 

Resumo 

Os programas de melhoramento de plantas conhecem as vantagens da fenotipagem de alto rendimento (FAR) para au-

mentar a eficiência dos métodos de fenotipagem clássico e triagem, o que é alcançado economizando tempo e melho-

rando a precisão da seleção. No entanto, a maioria dos programas ainda não utiliza sistematicamente essa tecnologia 

em suas linhas de melhoramento. Esta revisão tem como objetivo indicar as restrições de implementar FAR em larga 

escala e resumir estudos sobre dispositivos utilizados, tipos de dados coletados e métodos de inteligência artificial (IA) 

aplicados para prever e classificar características agronômicas em programas de melhoramento de plantas com foco na 

soja [Glycine max (L.) Merr.]. Excluindo plataformas FAR em laboratórios e casas de vegetação, sensoriamento remoto 

via satélite e robôs móveis autônomos, esta revisão se concentra em plataformas FAR-de-campo que capturam imagens 

aéreas por drones e aplicam métodos de IA para associar essas imagens a características de interesse. A pesquisa FAR-

de-campo também é conduzida com dispositivos portáteis que registram índices de vegetação individuais (e.g., NDVI), 

algumas bandas espectrais (radiômetros multiespectrais) ou o espectro eletromagnético contínuo da luz (espectrorradiô-

metros). No entanto, os fitomelhoristas devem avaliar milhares de linhagens experimentais a cada ano, pelo que a utili-

zação destes dispositivos em vez de drones implica um obstáculo entre a precisão da aquisição e o tempo necessário 

para a obtenção de dados. Um desafio nos próximos anos será ajustar modelos escaláveis e confiáveis e otimizar canais 

de entrada, processamento e saída de dados para fornecer informações úteis aos melhoristas antes que façam as sele-

ções. 

Palavras-chave: agricultura digital, aprendizado automatico, fenômica, sensoriamento remoto, soja

 
 

1. Introduction 

Breeding programs have only recently started using high-throughput phenotyping (HTP) platforms for predicting 

agronomic traits such as biotic and abiotic stress, date of physiological maturity, lodging, plant biomass, and 

grain yield(1). As imagery obtained by remote sensing has become readily available and affordable, efforts to 

use this technology have been on the rise to increase the genetic gain per unit of time. Although the traits 

mentioned above and others have already been subject to predictive and classification studies applying HTP, 

as in the case of maize [Zea mays L.], wheat [Triticum aestivum L.], rice [Oryza sativa L.], and soybean [Glycine 

max (L.) Merr.], among other crops, implementing these methods in breeding programs has been difficult (1)(2). 

This difficulty is mainly due to the uncertainty about the validation and repeatability of the predictions and the 

challenges in processing the data in a short time when data science is still an emerging discipline. This uncer-

tainty refers to the fact that many HTP studies validate their models in independent data subsets of the same 

experiment from where they were trained but do not test them in independent environments. Even when using 

several experiments for model training, they may not repeat accurate predictions to the extent that the same 

genotype can express different phenotypes across locations and years due to the environmental conditions, and 

mainly if multiple genes control the predicted trait(3). Data processing is more challenging in breeding programs 
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of developing countries than in private corporations, international programs, and public programs from devel-

oped countries because the latter have larger budgets and make rapid assimilation of the cute-edge technologies 

associated with earlier education of new users of these technologies. 

Besides facilitating the classification and prediction of agronomic traits, applying HTP can help identify genomic 

regions associated with traits of interest. This can be done by combining phenomics with other omics ap-

proaches, such as genomics, which have a high potential to advance genetic gain in plant breeding(4)(5). For 

example, Tanger and others(6) performed a genotyping-by-sequencing analysis on a rice population of 1,516 

recombinant inbred lines, constructed a genetic map, and performed a QTL (quantitative trait locus) mapping. 

However, they used a field-based HTP platform instead of the classic field phenotyping. As a result, they mapped 

genomic regions associated with four alleles that would have a negative effect on grain yield. 

This review focuses on field-based HTP platforms that take aerial images from unmanned aerial vehicles (UAV) 

and apply artificial intelligence (AI) methods to associate the imagery with traits of interest in soybean plant 

breeding. By using AI to analyze multi-dimensional data sets collected with this technology based on remote 

sensing and geographic information systems (GIS), breeders could have helpful information to make better de-

cisions when they select the best experimental lines. The studies and other references included here have been 

cited in peer-reviewed articles, provide a framework for discussing insights into implementing HTP at a large 

scale, and summarize predictive results according to the devices used, AI methods applied, and data classes 

collected in single or multiple environments. An extensive review is presented only for studies predicting physi-

ological maturity in soybean. Several relevant studies for other traits and crops are not included because the 

number of articles published on field-based HTP is already in the hundreds. Some studies based on hand-held 

devices are also mentioned because the data acquisition in the field is easy or because accurate canopy meas-

urements can be collected (e.g., spectroradiometers). Studies conducted with HTP platforms in laboratories and 

greenhouses, using tripods or towers –based or not on satellite remote sensing and GIS–, and autonomous 

mobile robots that use these technologies are not included. 

 

2. What HTP Is, What the HTP Platforms Are, and What the Difference Is with Phenomics 

HTP allows researchers and breeders to collect phenotypic data at a larger scale and in a shorter time than 

classic phenotyping, which comprises taking notes by visual appreciation or using measuring instruments with 

slow data acquisition. One of the pioneering studies applying HTP in plant sciences was conducted by Boyes 

and others(7). By studying plant growth and development over the life cycle of Arabidopsis mutant lines with 

defects in specific biochemical pathways, these authors identified subtle phenotypic differences that had not 

been identified before using only classic phenotyping. Thus, compared to classic phenotyping, the HTP effi-

ciency can be greater mainly when several traits are monitored simultaneously, but also the effectiveness, as 

happened with the study of Boyes and others(7) identifying slight phenotypic differences due to genetic variation 

and environmental stress. Another advantage related to this is that by applying HTP researchers and breeders 

can collect information without destroying the experimental unit, which is often the case in classic phenotyping 

(e.g. when assessing growth rate). 

A HTP platform in plant sciences is a system that integrates the use of devices and sensors, automated and 

eventually robotic procedures to collect the data, specific software for data extraction and analysis, and high 

computational resources to run and save big data with this software (i.e., workstations, local servers, or cloud 

servers). HTP platforms can be divided into two main groups: 1) laboratory and greenhouse HTP platforms and 

2) field-based HTP platforms. The first studies applying HTP started in laboratory platforms, studying behavioral 

mutations in mice(8) and later in plant sciences, as the study mentioned above in Arabidopsis(7). It is in 
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laboratories and greenhouses that interdisciplinary teams performing HTP using state-of-the-art facilities can 

achieve the highest level of precision in plant-based phenotyping. Meanwhile, field-based HTP platforms include 

the ones using hand-held devices and those collecting multi-dimensional data sets based on remote sensing 

and GIS. 

The concepts of phenomics and HTP are often interchanged; however, Araus & Cairns(9) illustrated that the 

phenomics scope goes further. While HTP is the art of phenotyping a large number of accessions with greater 

efficiency in a non-destructive manner, phenomics is ‘the acquisition of high-dimensional phenotypic data on an 

organism-wide scale’ that allow a better understanding of the pathways linking genes to traits(10). A few interdis-

ciplinary research centers distributed worldwide have the facilities and high-tech HTP platforms to apply phe-

nomics at the highest evaluative comprehension level. Several of these research centers applying phenomics 

are associated with the International Plant Phenotyping Network (https://www.plant-phenotyping.org/). Even 

though they may focus on conducting plant-based research (i.e., plants contained in plots), their scope reaches 

field-based HTP studies whose results can be applied more readily to plant breeding. 

Pipeline workflows applied by some plant-based HTP platforms have been packed as technological products, 

such as PhenoTrack3D, which was developed to track maize organs over time(11). Several other technological 

products are available for plant-based HTP, such as those reviewed by Gill and others(12) for plant stress phe-

notyping. However, many other HTP platforms have been individually customized by each interdisciplinary team 

according to the crop, the trait under study, the resources, and the know-how each team has. Interdisciplinary 

teams and customized pipelines were the standard when the first HTP platforms started to be developed, as is 

the case of Xiang & Tian(13), who even had to program the missions to fly an autonomous helicopter. This pipeline 

step for planning flight missions is now fully automated by the specialized software that comes with the drone 

kit. Users now only must choose flight height, the overlapping percentage among images to both sides of the 

experiment, or how to fly over the experiment (e.g., in a zigzag design). Similarly, other pipeline steps that include 

complex codes are constantly summarized in functions included in packages that are uploaded, for example, to 

the ‘R Project for Statistical Computing’ (https://www.r-project.org) or to ‘GitHub’ (https://github.com), an AI-pow-

ered developer platform. A customized pipeline example, applied in the University of Illinois at Urbana-Cham-

paign soybean breeding program, is shown for predicting the date the plant rows reach physiological maturity 

(Figure 1). 

 

3. Field-Based HTP Platforms: Devices, Data Class Collected, and Artificial Intelligence 
(AI) Methods Used in Studies Conducted on Soybean and Other Crops 

Multi-rotors are the most common UAV used to image field experiments as they are more affordable compared 

with fixed-wing drones or other rotary drones (helicopters). Typically, cheap UAV carry digital RGB (red, green, 

blue) cameras, while professionals often integrate more expensive multispectral or hyperspectral cameras. Alt-

hough multispectral cameras may have a lower resolution than RGB cameras, a significant advantage of the 

former is that their lenses can record images at frequencies beyond the spectrum visible to the human eye, such 

as the red edge and near-infrared (NIR) spectrum bands. Both bands are the most commonly recorded by 

multispectral cameras, besides the RGB bands, and can be used to calculate several of the vegetation indices 

used in agricultural sciences. For example, the normalized difference vegetation index (NDVI = [NIR – red] / 

[NIR + red]) (Kriegler and others cited by Huang and others(14)), and the normalized difference red edge (NDRE = 

[NIR – red edge] / [NIR + red edge])(15). 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
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expensive and have a lower spatial resolution than those achieved by lenses recording the spectral of the visible 

light and beyond, such as the red-edge and NIR spectrums(25). Thus, in plant breeding, researchers must rec-

oncile the spatial pixel resolution of the thermal sensor with the plot size of the breeding experiments. For ex-

ample, Kaler and others(26) conducted an association mapping study with 345 soybean accessions to identify 

loci for canopy temperature under drought conditions. Instead of the classic phenotyping, the authors used a 

field-based HTP platform with a thermal infrared camera (resolution 640 × 512 pixels) mounted on a tethered 

balloon filled with helium and held at 75 m. In this case, the resolution was enough to associate the pixel infor-

mation to the corresponding size plot, 3.65 m in length with 0.76 m row spacing (two-row plots) in one experi-

ment, and 4.57 m in length with 0.19 m row spacing (seven-row plots) in the other experiment. 

Plant breeders are also interested in predicting physiological maturity using remote sensing, mainly in plant-row 

trials because of the large amount of time required to take notes for several thousand experimental lines. In the 

case of soybean, physiological maturity is the R8 growth stage(27), defined as when 95% of pods reach their 

mature color, and the maximum biomass accumulation in the seed occurs. As a field-based HTP case study, 

the studies conducted to date in single and multiple environments using different methods of analyzing RGB and 

multispectral images to predict soybean physiological maturity are listed (Table 1). Using the machine learning 

algorithm Random forest (RF) and a binary prediction model applied to multispectral aerial images taken over 

plant rows at the University of Illinois, Yu and others(28) reported an overall accuracy of 93.8% for classifying R8. 

The authors also remotely measured the canopy area and the length of the plant rows and reported correlations 

with grain yield of r = 0.56 and r = 0.49, respectively. By using RGB images and deep convolutional neural net-

works (CNN), Trevisan and others(29) and Moeinizade and others(30) also trained models to predict the R8 stage 

in soybean. In several trials evaluated in different environments, both studies reported a root mean squared 

error (RMSE) of approximately 2 days for the average of analyses, a tolerable value considering that breeders 

most often take notes every 5-7 days. Still, these and other authors reported lower prediction errors for some 

experiments (Table 1). 

Additional studies to predict physiological maturity in soybean have been conducted using methods different 

from RF and CNN (Table 1). Using a ground-based field spectroradiometer to measure the canopy reflectance, 

Christenson and others(19) applied partial least squares regression (PLSR) to associate the R8 stage with 91 

wavebands and four vegetation indices with different versions for its calculation. These were six versions for 

RENDVI, the blue, green, and red NDVIs, and three for the water index. After the PLSR analysis, one model 

was adjusted with the most significant indices and the other with the most significant individual wavebands 

(RMSE = 5.5 and 5.2 days, respectively). A possible reason to explain the fact that these prediction errors were 

more than twice the errors obtained by the last two studies mentioned above(29)(30) is the n-value used to train 

the models. While Christenson and others(19) used 40 cultivars, the other two studies used hundreds to several 

thousands of experimental lines. It is noteworthy that with a ground-based field spectroradiometer, it is possible 

to collect a huge amount of spectral information with high accuracy. However, the number of plots an individual 

can phenotype daily is a few hundred, while a drone carrying a camera can phenotype ~10,000 plant rows in 

half an hour. 

Applying PLSR to multispectral images taken from a drone to 326 soybean lines, Zhou and others(33) explained 

up to 70% of the R8 stage variation (RMSE = 1.7 days). This best result occurred using images from the second 

of three flight dates, five linear components in the PLSR model, and the rating change of image features (from 

the second to the third flight) as predictors. In turn, the above results were improved by adjusting the maturity 

records annotated in the field with the variances of two canopy image features (red edge NDVI and canopy 

chlorophyll content index) obtained from soybean lines that matured the same day according to the predictions 

(Table 1). However, applying the same adjustment technique but using images of the third flight instead of the 

second flight, the accuracy of the maturity predictions did not improve compared to the same analysis but without 

adjusting the records annotated in the field (R2 = 0.71 and RMSE = 1.6 days).
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Table 1. Field-based high-throughput phenotyping studies conducted in single and multiple environments using different methods of analyzing RGB (red, green, blue) and 

multispectral images to predict physiological maturity in soybean 

 
The indicators show the results of those experiments and analyses that obtained the lowest prediction error. 
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Narayanan and others(31) calculated a normalized green excess index and adjusted a piecewise linear regres-

sion model in function of time. For a subset of test data and locations, the adjusted models showed a range in 

the Pearson correlation coefficient (r) from 0.79 to 0.92 (Table 1). Based on these results, Volpato and others(36) 

conducted a comparative analysis, deciding after testing two other vegetation indices to use the same normal-

ized green excess index with a nonparametric local polynomial regression model. Finally, one of the most ex-

tensive studies on soybean was conducted by Yuan and others(32), who used RGB images and five regression 

and classification models to predict the date of R8, plant height, seed size, protein, oil, fiber, and grain yield. In 

the case of physiological maturity, the models explained up to 76% of the R8 stage variation but with a higher 

error than the other studies cited previously (RMSE = 3.7 days). 

Trevisan and others(29) and Moeinizade and others(30) stated that an advantage of CNN is that they benefit from 

the spatial structure of the pixels. This advantage could be especially important when CNN is applied to complex 

traits, such as plant development (e.g., morphology, plant growth, and plant/organ counting) and plant stress(40). 

Physiological maturity is a trait strongly associated with the loss of green in the leaves; therefore, predicting 

maturity using this easy-to-observe change in color is one reason why Moeinizade and others(30) achieved good 

performance with CNN after using just four convolutional layers. A convolutional layer comprises the training of 

specific details of images (features) that are automatically learned and stacked hierarchically on other layers. 

Other researchers have found that RF can also be applied to predict complex traits. For example, in a compar-

ative analysis between three machine learning algorithms for wheat lodging classification, Zhang and others(41) 

obtained lower overall accuracy fluctuations between and within ten replicates of datasets from three different 

dates when they used RF compared to neural networks or support vector machine (SVM). In the same work, 

when RF and the best of three deep learning methods –GoogLeNet, CNN, and VGG-16– were compared, no 

significant differences were identified (P<0.05). 

Based on classification and regression trees (CART), RF is also a machine learning algorithm that ensembles 

trees (i.e., the predictors) by using the bootstrap aggregation method, also known as the bagging method (42)(43). 

Emulating branches in a tree, the splitting in each node is a sequential decision process, meaning that the 

splitting occurs from the base or root node to the top leaf; this is the terminal node where the splitting events can 

no longer happen. A difference from single decision trees is that the RF algorithm uses the bagging method, 

which implies that the splitting occurs based on a random selection of features with replacement from the original 

training set that can be categorical or numerical(42)(43). Even with the risk of high bias, the aim of training different 

random subsets within the training set (i.e., bagging) is to decrease the correlations between trees and the 

variance, which can cause overfitting of the trained model(44). Through learning algorithms associated with their 

respective bootstrap samples, the final ensemble of the trees results in a single classifier or regressor, according 

to the type of the dependent variable(43). 

Pubescence color (gray, light tawny, and tawny) is an important soybean breeding trait that was recently classi-

fied using aerial images taken from a UAV(45). Breeders take notes for this qualitative trait to characterize the 

experimental lines and trace whether the identity in the field and the progenies' frequencies are according to the 

expected. Two loci epistatically control pubescence color, and the gene combinations that give the three phe-

notypes are tt__ (gray), T_tdtd (light tawny), and T_Td_ (tawny)(46)(47). Applying the SVM algorithm to the multi-

spectral images' analysis, Bruce and others(45) could classify gray and tawny with an overall accuracy in the 

tested data of 75% using the red/blue band ratio. However, they failed to separate light tawny from tawny pu-

bescence because the algorithm incorrectly assigned all the light tawny lines as having tawny pubescence. 

Lodging is another categorical and important trait in soybean, but unlike pubescence color, which is a nominal 

categorical variable, lodging is mainly considered by breeders as an ordinal categorical variable. Usually, this is 

by visually assigning a number on a scale from 1 to 5 in the field, where the higher the number, the greater the 

percentage of prostrated plants. Based on this scale, Roth and others(48) discarded their intention of developing 
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a drone-based lodging index because they could not extract the time at which plant height drops. This was 

related to the fact that when they conducted the photogrammetric processing, the depth maps were sensitive to 

defoliation and color changes due to the senescence phase. However, using the same ordinal categorical scale 

but divided into four levels: non-lodging [1, 1.5], moderate lodging [2, 2.5], high lodging [3, 3.5], and severe 

lodging [4, 4.5, 5], Sarkar and others(49) could classify lodging with an overall accuracy of 96% by applying 

artificial neural network (ANN), though this was after using a data balancing method (smote-ENN) to deal with 

the unbalanced number of plots per lodging level. Previously, although predicting wheat lodging instead of soy-

bean and using a binary categorical variable (lodging and non-lodging), Zhang and others(41) achieved an overall 

accuracy of ~90% by applying RF, SVM, and three deep learning methods without preprocessing the data with 

a balancing method. 

Machine learning and deep learning are the two branches of AI methods most commonly applied for data anal-

ysis collected using a HTP platform(50); however, robotics and computer vision are two other increasing AI meth-

ods. On the other hand, non-AI methods such as process-based models(48), geospatial analysis(51), and statistical 

and mathematical modeling combining genomic data(52) have also been applied for plant breeding purposes 

based on the imagery collected with a HTP platform. Within each one of the above AI and non-AI methods, 

several promising approaches with potential use in plant breeding have been reported for predicting main agro-

nomic traits using HTP field platforms. However, there is no agreement about what learning algorithms and other 

analytic methods best predict the different traits. Undoubtedly, the genetic diversity of the germplasm, the size 

of the training and validation datasets, the number of trials across the different environments, the number of 

flights, the time and weather conditions while the images are taken, and the different analysis pipelines applied 

affect the results expressed in terms of R2 and RMSE when the variable is numerical. 

Even using the same methods and information, the results may vary according to the data type researchers 

assume when studying the same trait. Although two of the studies mentioned above were independent of each 

other, one studying lodging on wheat and the other on soybean(41)(48), the first one considered the trait as a 

binary categorical variable (lodging and non-lodging), and the second as an ordinal categorical variable (1-5 

scale). Another example is predicting soybean physiological maturity, where independent studies considered 

different data types. While Yu and others(28) and Hu and others(37) considered the trait as a binary categorical 

variable (mature and immature plots), Zhang and others(38) did it as a nominal categorical variable (immature, 

near-mature, mature, and harvested plots), and others as a numerical variable to predict the date the plant rows 

reached the R8 stage (Table 1). Besides differences in the prediction error values that may result, it is notewor-

thy that the kind of information the results provide to the breeders also matters. For example, in the case of 

soybean physiological maturity, binary models can be helpful mainly for classifying maturity groups because 

these models do not predict what date the event occurred (i.e., the R8 stage). Meanwhile, considering a time 

series of images and the variable as numerical, a regression analysis can determine the date on which the same 

event occurred; so, besides maturity groups, the model is also helpful in predicting the germplasm cycle length 

expressed in days. 

Compared to pubescence color, lodging, physiological maturity, and other traits in soybean and other crops, 

more research studies have been conducted to predict aboveground biomass and its relationship with grain 

yield. In one interesting study conducted on soybean, Maimaitijiang and others(53) adjusted a model combining 

canopy spectral and volumetric information, which they called “vegetation index weighted canopy volume model 

(CVMVI).” The regression analysis between the canopy volume with aboveground biomass determined through 

destructive field sampling indicated that this proposed model (CVMVI) had a similar coefficient of regression 

(R2 = 0.893) as more complex models such as PLSR (R2 = 0.911), or stepwise multilinear regression 

(R2 = 0.915). The predictions were made by first estimating canopy volume by photogrammetry, a technique 

highly correlated with the aboveground biomass(54). The volumes were then weighted by a bulk density factor 

calculated with the green red ratio index (GRRI = green/red) of pixels, chosen among other vegetation indices 



 

Pérez OM 

 

10 Agrociencia Uruguay 2025;29:e1530 
 

due to its best fit. Using data from the same experiment, Maimaitijiang and others(55) applied multimodal data 

fusion within a deep neural network framework and compared the results with other learning algorithms. The 

deep neural network algorithm explained a higher proportion of the variation in grain yield (72%) compared to 

RF (66%). However, when only the RGB bands were used as features, RF was the algorithm that best explained 

the grain yield variation. 

Two of the most important traits in soybean and other crops, physiological maturity(29)(30) and aboveground bio-

mass and its relationship to grain yield(53)(55), were predicted with a low error using only RGB images collected 

with drones carrying affordable digital cameras. Multispectral cameras are several times more expensive than 

digital RGB cameras, mainly if they include a thermal sensor. Among other traits, they have been used more for 

studying traits related to plant health and plant stress, such as diseases, pests, and water deficit in soy-

bean(56)(57)(58). Concerning field spectroradiometers collecting hyperspectral data, they are suitable for studying 

complex traits such as photosynthetic traits(19)(20)(21). However, there is a trade-off between the cost and benefit 

of including RGB, multispectral, or hyperspectral data for the predictive analyses. 

Spectroradiometers are even much more expensive than drones carrying multispectral cameras. At the same 

time, spectroradiometers need more time to collect the same amount of data than flying a drone over the exper-

iments. Therefore, collecting data with spectroradiometers would be a better option when RGB or multispectral 

data cannot provide proper or accurate information for certain traits. Otherwise, besides using more time than a 

drone carrying a camera (RGB or multispectral), redundant information may be collected with spectroradiome-

ters, mainly when phenotyping simple traits. Still, this may also occur with complex traits when the relationships 

between light reflectance patterns and the underlying biological processes of plants are still poorly under-

stood(12), though first comprehensive studies are arising(21). Phenotyping such a large amount of data is partic-

ularly challenging when plant breeders attempt to identify slight favorable genetic differences among thousands 

of experimental lines, commonly evaluated in small single-row plots. These considerations also apply to other 

self-pollinated crops besides soybean and cross-pollinated crops when selecting inbred lines based on hybrid 

performance. 

 

4. Justification of Research Applying Field-Based HTP 

Plant breeding programs of self-pollinated grain or legume crops, such as soybean, need to annually record 

phenotypic traits for thousands of experimental lines grown in plant rows to select those that should be evaluated 

in preliminary yield tests. Similarly, the same occurs when testing F1 hybrids in cross-pollinated grain crops such 

as maize. In both cases, it is a time-consuming task that includes the characterization before harvest of the date 

to reach silking in maize or the R8 stage in soybean, only to mention a couple of traits. In the end, much of the 

data collected is not used because the vast majority of the plant rows or inbred lines in soybean and maize, 

respectively, will be discarded due to their low grain yield and not because of a too-short or too-long cycle length. 

In the case of soybean, experimental lines are often developed from hybridizations between parents of different 

maturity groups. Hence, the range of days to reach the R8 stage in a breeding population can be wide between 

and within families, requiring a repeated collection of field notes every three or four days for about four to five 

weeks. In addition, because of the high number of lines to evaluate, breeding programs often conduct their 

selections in trials of one-row plots of plant rows. Therefore, the selection accuracy for grain yield can be com-

promised due to a lack of replication, but also because lines of different maturities can be affected differently by 

random weather conditions that occur each growing season. 

The use of drones for HTP by taking aerial images across the growing season promises to improve the efficiency 

of breeding programs. This could increase efficiency by saving time or allow the evaluation of a greater number 
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of plots using similar resources, which at the same time increases selection intensity. In turn, by using the image 

features, phenotypic values could be estimated with higher accuracy than can be done by humans taking visual 

ratings in the field. For example, it was reported that for the R8 stage in soybean, predicted values were more 

reliable than ground-truth values(36). In this same crop, similar results could be obtained for lodging or pubes-

cence color, considering that within a breeding program the notes are often taken by a team and not only by one 

person. 

To date, only one study has been conducted for predicting pubescence color in soybean(45), while not many but 

several studies have predicted the R8 stage using different algorithms with aerial images or hyperspectral re-

flectance signatures of the canopy (Table 1). However, the small data set is a limitation of some studies, espe-

cially when using a spectroradiometer. Another relevant limitation is that only two of the studies predicting ma-

turity were conducted across multiple environments and tested the models in an independent environment(29)(39), 

highlighting the relevance of conducting more research to test the reproducibility of the models. 

Although several studies have been conducted to predict aboveground biomass and grain yield, the same ques-

tion remains about models' reproducibility because some studies have trained them using only a single environ-

ment and with low n-values. For instance, although Maimaitijiang and others(53)(55) used the most cutting-edge 

algorithm, the study was conducted in a single environment with only three cultivars evaluated in multiple sub-

plots. The uncertainty about the reproducibility of models is a concern in the breeders' community(2). Poor repro-

ducibility would occur mainly when complex traits are predicted using small datasets representing a unique 

environment or germplasm. In this sense, when RF was proposed, an advantage over other learning algorithms 

is that it includes the bagging method in the algorithm, a method that decreases the overfitting of the trained 

model(44). Concerning overfitting, models trained with shared check cultivars across environments had a better 

performance when tested in independent environments(29)(39), and they were also more general when redundant 

image features were disregarded after conducting principal component analysis(39). 

For complex traits such as plant growth, canopy volume, aboveground biomass, and grain yield, most predictive 

studies in soybean and other crops have obtained leaf or canopy reflectance records using only one kind of HTP 

platform. Three examples of this are Ma and others(18), that used a portable multispectral radiometer; Yu and 

others(28), that used multispectral images; and Maimaitijiang and others(53)(55), that used RGB images. At a breed-

ing population scale, studies conducted in soybean relating canopy reflectance information obtained from differ-

ent platforms or sources are absent(59)(60). Instruments such as portable spectroradiometers have the advantage 

of recording the continuous range of the electromagnetic spectrum, which opens more opportunities to relate 

features to the traits of breeding interest(19)(20)(21). It is possible that more accurate predictions could be made for 

complex traits by associating features from time series of aerial images with hyperspectral reflectance signatures 

of the canopy. 

 

5. Concluding Remarks 

Several studies indicate that predicting traits of agronomic interest using a field-based HTP platform based on 

features of aerial imagery associated with the respective ground-truth values is possible. However, most studies 

applying HTP have validated their models in data subsets of the same environment where they were trained, 

which can lead to overfitting when the models are tested in a different environment. Overfitting may happen if 

too many image features or redundant information is used to train the models, the variation in the germplasm is 

narrow for the trait of interest, and the growing conditions among environments differ significantly. Considering 

this, collaborative international studies using the same workflow could fine-tune more generalized models by 

covering a broader spectrum of possible scenarios. Hence, to provide helpful information for breeders, there is 
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